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An Introduction to the Statistical Drake Equation 

1. Introduction 

SETI (an acronym for "Search for Extraterrestrial Intelligence") is a relatively 
new branch of scientific research, having begun only in 1959. Its goal is to 
ascertain whether alien civilizations exist in the universe, how far from us 
they exist, and possibly how much more advanced than us they may be. 

As of 2009, the only physical tools we know that could help us get in touch 
with aliens are the electromagnetic waves an alien civilization could emit and 
we could detect. This forces us to use the largest radiotelescopes on Earth for 
SETI research, because the higher our collecting area of electromagnetic 
radiation is, the higher our sensitivity is (that is, the farther in space we can 
probe). Yet, even by using the largest radiotelescopes on Earth (the 310-meter 
dish at Arecibo, for instance), we cannot search for aliens beyond, say, a few 
hundred light years away. This is a very, very small amount of space around us 
within our galaxy, the Milky Way, that is about 100,000 light years in diameter. 
Thus, current SETI can cover only a very tiny fraction of the galaxy, and it is 
not surprising that in the past 50 years of SETI searches, NO extraterrestrial 
civilization was discovered. Quite simply, we did not get far enough! 

This demands the construction of much more powerful and radically new 
radiotelescopes. Rather than big and heavy metal dishes, whose mechanical 
problems hamper SETI research too much, we are now turning to "software 
radiotelescopes," where a large number of small dishes (ATA = Allen 
Telescope Array, and ALMA= Atacama Large Millimeter/submillimeter Array) 
or even just of simple dipoles (LOFAR = Low Frequency Array) using state-of
the-art electronics and very-high-speed computing can outperform the 
classical radiotelescopes in many regards. The final dream in this field is the 
SKA(= Square Kilometer Array), currently being designed and expected to be 
completed around 2020. 

2. The Key Question: How Far are They? 

But still, the key question remains: how far are they? 

Or, more correctly, how far do we expect the NEAREST extraterrestrial civilization to be 
from the Solar System in the galaxy? 

This question was first faced in a scientific manner back in 1961 by the same scientist 
who also was the first experimental SETI radio astronomer ever: the American, Frank 
Donald Drake (born 1930). He first considered the shape and size of the galaxy where 
we are living: the Milky Way. This is a spiral galaxy measuring some 100,000 light 
years in diameter and some 16,000 light years in thickness of the Galactic Disk at half
way from its center. That is: 

The diameter of the galaxy is (about) 100,000 light years, (abbreviated ly) i.e., its 
radius, Rcutu\\'' is about 50,000 ly. 
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The thickness of the Galactic Disk at half-way from its center, h1;"1,11,, is about 16,000 ly. 

The volume of the galaxy may then be approximated as the volume of the 
corresponding cylinder, i.e. 

V - R 2 f Go/ow - Jr r_;(!/<1n I • 

Now consider the sphere around us having a radius r. The volume of such a sphere is 

, _4 [Er Distance)' 
i Our_ Splre1t· - :;" Jr 

2 

In the last equation, we had to divide the distance "ET_Distance" between ourselves 
and the nearest ET civilization by 2 because we are now going to make the 
unwarranted assumption that all ET civilizations are equally spaced from each 
other in the galaxy! This is a crazy assumption, clearly, and should be replaced by 
more scientifically-grounded assumptions as soon as we know more about our Galactic 
Neighborhood. At the moment, however, this is the best guess that we can make, and 
so we shall take it for granted, although we are aware that this is a weak point in the 
reasoning. 

Furthermore, let us denote by N the total number of civilizations now living in the 
galaxy, including ourselves. Of course, this number N is unknown. We only know that 
N 21 since one civilization does at least exist! 

Having thus assumed that ET civilizations are UNIFORMLY SPACED IN THE GALAXY, we 
can then write down the proportion: 

N 

That is, upon replacing both (1) and (2) into (3): 

4 ,T[ Ef_Distance 'j' 
J 2 

N 

The last equation contains two unknowns: N and ET_Distance, and so we don't know 
which one it is better to solve for. 

However, we may suppose that, by resorting to the (rather uncertain) knowledge that 
we have about the Evolution of the galaxy through the last 10 billion years or so, we 
might somehow compute an approximate value for N. 

Then, we may solve (4) for ET_Distance thus obtaining the (AVERAGE) DISTANCE 
BETWEEN ANY PAIR OF NEIGHBORING CIVILIZATIONS IN THE GALAXY (DISTANCE 
LAW) 

5 
UNCLASSIFIED/ fffUl 8ffll!Itlrt l!l!iili 8HLY 

( 1) 

(2) 

(3) 

(4) 



UNCLASSIFIED//P8"1 8PPll!l"li Wliili liUllill' 

' 6 R" I . • ) c;,,,,,,-,. l C 
Ef_Dtstance(N)= ifN • ifN 

where the positive constant C is defined by 

C = -' 6 Rl,,1<rn he;""'-" c:c 28845 light years. 

Equations (5) and (6) are the starting point to understand the origin of the Drake 
equation that we discuss in detail in Section 3 of this paper. 

Let us just complete this section by pointing out three different numerical cases of the 
distance law (5): 

( 5) 

(6) 

• We know that we exist, so N may not be smaller than 1, i.e., N z I. Suppose then 
that we are alone in the galaxy, i.e., that N=l. Then the distance law (5) yields as 
distance to the nearest civilization from us just the constant C, i.e., 28,845 light 
years. This is about the distance in between ourselves and the center of the galaxy 
(i.e. the Galactic Bulge). Thus, this result seems to suggest that, if we do not find 
any extraterrestrial civilization around us in these outskirts of the galaxy where we 
live, we should look around the Galactic Center first. And this is indeed what is 
happening, i.e., many SETI searches are actually pointing the antennas towards the 
Galactic Center, looking for beacons (see, for instance ref. [1]). 

• Suppose next that N=l000, i.e. there are about a thousand extraterrestrial 
communicating civilizations in the whole galaxy right now. Then the distance law (5) 
yields an average distance of 2,885 light years. This is a distance that most 
radiotelescopes in Earth may not reach for SETI searches right now: hence the need 
to build larger radiotelescopes, like ALMA, LOFAR and the SKA. 

• Suppose finally that N=l000000, i.e., there are a million communicating civilizations 
now in the galaxy. Then the distance law (5) yields an average distance of 288 light 
years. This is within the (upper) range of distances that our current radiotelescopes 
may reach for SETI searches, and that justifies all SETI searches that have been 
done so far in the first fifty years of SETI (1960-2010). 

In conclusion, interpolating the above three special cases of N, we may say that the 
distance law (5) yields the following key diagram of the average ET distance vs. the 
assumed number of communicating civilizations, N, in the galaxy right now (Figure 1): 

6 
UNCLASSIFIED//:r:aA: 8FFifiil1l1k W~i a•lklf 



UNCLASSIFIED//FQA: 8FFI8Itllt ~!ti! OICLI 
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ASSL:M ED \'UMBER of civilization~ in the Galaxy (that i,, Nin the Drake equation) 

Figure 1. DISTANCE LAW; i.e., the Average Distance (plot along the vertical axis in light years) Versus 
the NUMBER of Communicating Civilizations ASSUMED to Exist in the Galaxy Right Now 

3. Computing N By Virtue of the Drake Equation (1961) 

In the previous section, the problem of finding how close the nearest ET civilization may 
be was "solved" by reducing it to the computation of N, the total number of 
extraterrestrial civilizations now existing in this galaxy. In this section the famous 
Drake equation is described, that was proposed back in 1961 by Frank Donald Drake 
(born 1930) to estimate the numerical value of N. We believe that no better 
introductory description of the Drake equations exists other than the one given by Carl 
Sagan in his 1983 book "Cosmos" (ref. [2]), in its turn based on the famous TV series 
"Cosmos." So, in this paragraph we report Carl Sagan's description of the Drake 
equation unabridged. 

"But is there anyone out there to talk to? With a third or a half a trillion stars in our 
Milky Way galaxy alone, could ours be the only one accompanied by an inhabited 
planet? How much more likely it is that technical civilizations are a cosmic 
commonplace, that the galaxy is pulsing and humming with advanced societies, and, 
therefore, that the nearest such culture is not so very far away - perhaps transmitting 
from antennas established on a planet of a naked-eye star just next door. Perhaps 
when we look up at the sky at night, near one of those faint pinpoints of light is a world 
on which someone quite different from us is then glancing idly at a star we call the Sun 
and entertaining, for just a moment, an outrageous speculation. 
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It is very hard to be sure. There may be several impediments to the evolution of a 
technical civilization. Planets may be rarer than we think. Perhaps the origin of life is 
not so easy as our laboratory experiments suggest. Perhaps the evolution of advanced 
life forms is improbable. Or it may be that complex life forms evolve more readily, but 
intelligence and technical societies require an unlikely set of coincidences - just as the 
evolution of the human species depended on the demise of the dinosaurs and the ice
age recession of the forests in whose trees our ancestors screeched and dimly 
wondered. Or perhaps civilizations arise repeatedly, inexorably, on innumerable planets 
in the Milky Way, but are generally unstable; so all but a tiny fraction are unable to 
survive their technology and succumb to greed and ignorance, pollution and nuclear 
war. 

It is possible to explore this great issue further and make a crude estimate of N, the 
number of advanced civilizations in the galaxy. We define an advanced civilization as 
one capable of radio astronomy. This is, of course, a parochial if essential definition. 
There may be countless worlds on which the inhabitants are accomplished linguists or 
superb poets but indifferent radio astronomers. We will not hear from them. N can be 
written as the product or multiplication of a number of factors, each a kind of filter, 
every one of which must be sizable for there to be a large number of civilizations: 

• Ns, the number of stars in the Milky Way galaxy. 

• fp, the fraction of stars that have planetary systems. 

• ne, the number of planets in a given system that are ecologically suitable for life. 

• fl, the fraction of otherwise suitable planets on which life actually arises. 

• fi, the fraction of inhabited planets on which an intelligent form of life evolves. 

• fc, the fraction of planets inhabited by intelligent beings on which a communicative 
technical civilization develops. 

• fl, the fraction of planetary lifetime graced by a technical civilization. 

Written out, the equation reads 

N=N.1··.fi1-11e-_tl-_fi-_fc·.fL (7) 

All of the fs are fractions, having values between 0 and 1; they will pare down the 
large value of Ns. 

To derive N we must estimate each of these quantities. We know a fair amount about 
the early factors in the equation, the number of stars and planetary systems. We know 
very little about the later factors, concerning the evolution of intelligence or the lifetime 
of technical societies. In these cases our estimates will be little better than guesses. I 
invite you, if you disagree with my estimates below, make your own choices and see 
what implications your alternative suggestions have for the number of advanced 
civilizations in the galaxy. One of the great virtues of this equation, due to Frank Drake 
of Cornell, is that it involves subjects ranging from stellar and planetary astronomy to 
organic chemistry, evolutionary biology, history, politics and abnormal psychology. 
Much of the Cosmos is in the span of the Drake equation. 
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We know Ns, the number of stars in the Milky Way galaxy, fairly well, by careful counts 
of stars in a small but representative region of the sky. It is a few hundred billion; some 
recent estimates place it at 4 x 1011 . Very few of these stars are of the massive short
lived variety that squander their reserves of thermonuclear fuel. The great majority 
have lifetimes of billions or more years in which they are shining stably, providing a 
suitable energy source for the energy and evolution of life on nearby planets. 

There is evidence that planets are a frequent accompaniment of star formation: in the 
satellite systems of Jupiter, Saturn and Uranus, which are like miniature solar systems; 
in theories of the origin of the planets; in studies of double stars; in observations of 
accretion disks around stars; and is some preliminary investigations of gravitational 
perturbations of nearby stars. 1 Many, perhaps even most, stars may have planets. We 
take the fraction of stars that have planets, fp, as roughly equal to 1/3. Then the total 
number of planetary systems in the galaxy would be Ns fp ~ 1.3 x 1011 (the symbol~ 
means "approximately equal to"). If each system were to have about ten planets, as 
ours does, the total number of worlds in the galaxy would be more than a trillion, a vast 
arena for the cosmic drama. 

In our own solar system there are several bodies that may be suitable for life of some 
sort: the Earth certainly, and perhaps Mars, Titan and Jupiter. Once life originates, it 
tends to be very adaptable and tenacious. There must be many different environments 
suitable for life in a given planetary system. But conservatively we choose ne=2. Then 
the number of planets in the galaxy suitable for life becomes Ns fp ne ~ 3 x 1011

. 

Experiments show that under the most common cosmic conditions the molecular basis 
of life is readily made, the building blocks of molecules able to make copies of 
themselves. We are now on less certain grounds; there may, for example, be 
impediments in the evolution of the genetic code, although I think this is unlikely over 
billions of years of primeval chemistry. We choose fl~ 1/3, implying a total number of 
planets in the Milky Way on which life has arisen at least once as Ns fp ne fl~ 1 x 1011, 

a hundred billion inhabited worlds. That in itself is a remarkable conclusion. But we are 
not yet finished. 

The choices of fi and fc are more difficult. On the one hand, many individually unlikely 
steps had to occur in biological evolution and human history for our present intelligence 
and technology to develop. On the other hand, there must be quite different pathways 
to an advanced civilization of specified capabilities. Considering the apparent difficulty 
in the evolution of large organisms, represented by the Cambrian explosion, let us 
choose fix fc = 1/100, meaning that only 1 per cent of planets on which life arises 
actually produce a technical civilization. This estimate represents some middle ground 
among the varying scientific options. Some think that the equivalent of the step from 
the emergence of trilobites to the domestication of fire goes like a shot in all planetary 
systems; others think that, even given ten or fifteen billion years, the evolution of a 
technical civilization is unlikely. This is not a subject on which we can do much 
experimentation as long as our investigations are limited to a single planet. Multiplying 

1 Carl Sagan was writings these lines back in the 1970's, when no extrasolar planets had been discovered yet. The 
first such discovery occurred in 1995, when Michel Mayor and Didier Queloz, working at the "Observato1re de Haute 
Provence" in France, discovered the first extrasolar planet orbiting the nearby star 51 Peg. This first extrasolar 
planet was hence named 51 Peg B. Many more extrasolar planets were discovered around nearby stars ever since. 
As of April 2009, 347 extrasolar planets (exoplanets) are listed in the Extrasolar Planets Encyclopaedia. 
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these factors together, we find Ns fp ne fl fi fc ~ 1 x 109, a billion planets on which 
technical civilizations have arisen at least once. But that is very different from saying 
that there are a billion planets on which technical civilizations now exist. For this we 
must also estimate fL. 

What percentage of the lifetime of a planet is marked by a technical civilization? The 
Earth has harbored a technical civilization characterized by radio astronomy for only a 
few decades out of a lifetime of a few billion years. So far, then, for our planet fL is less 
than 1/108, a millionth of a percent. And it is hardly out of the question that we might 
destroy ourselves tomorrow. Suppose this were a typical case, and the destruction so 
complete that no other technical civilization - of the human or any other species - were 
able to emerge in the five or so billion years remaining before the Sun dies. Then Ns fp 
ne fl fi fc fL ~ 10, and, at a given time there would be only a tiny smattering, a handful, 
a pitiful few technical civilizations in the galaxy, the steady state number maintained as 
emerging societies replace those recently self-immolated. The number N might be even 
as small as 1 if civilizations tend to destroy themselves soon after reaching a 
technological phase; there might be no one for us to talk with but ourselves. And that 
we do but poorly. Civilizations would take billions of years of tortuous evolution, and 
then snuff themselves out in an instant of unforgivable neglect. 

But consider the alternative, the prospect that at least some civilizations learn to live 
with technology; that the contradictions posed by the vagaries of past brain evolution 
are consciously resolved and do not lead to self destruction; or that, even if major 
disturbances occur, they are reveres in the subsequent billions of years of biological 
evolution. Such societies might live to a prosperous old age, their lifetimes measured 
perhaps on geological or stellar evolutionary time scales. If 1 percent of civilizations can 
survive technological adolescence, take the proper fork at this critical historical branch 
point and achieve maturity, then fL ~ 1/100, N ~ 107 , and the number of extant 
civilizations in the galaxy is in the millions. Thus, for all our concern about the possible 
unreliability of our estimates of the early factors in the Drake equation, which involve 
astronomy, organic chemistry and evolutionary biology, the principal uncertainty comes 
to economics and politics and what, on Earth, we call human nature. It seems fairly 
clear that if self-destruction is not the overwhelmingly preponderant fate of galactic 
civilizations, then the sky is softly humming with messages from the stars. 

These estimates are stirring. They suggest that the receipt of a message from space is, 
even before we decode it, a profoundly hopeful sign. It means that someone has 
learned to live with high technology; that it is possible to survive technological 
adolescence. This alone, quite apart from the contents of the message, provides a 
powerful justification for the search for other civilizations. 

4. The Drake Equation is Over-Simplified 

In the nearly fifty years (1961-2009) elapsed since Frank Drake proposed his equation, 
a number of scientists and writers tried to find out which numerical values of its seven 
independent variables are more realistic in agreement with our present-day knowledge. 
Thus there is a considerable amount of literature about the Drake equation nowadays, 
and, as one can easily imagine, the results obtained by the various authors largely 
differ from one another. In other words, the value of N, that various authors obtained 
by different assumptions about the astronomy, the biology and the sociology implied by 
the Drake equation, may range from a few tens (in the pessimist's view) to some 
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million or even billions in the optimist's opinion. A lot of uncertainty is thus affecting our 
knowledge of N as of 2010. In all cases, however, the final result about N has always 
been a sheer number, i.e., a positive integer number ranging from 1 to millions or 
billions. This is precisely the aspect of the Drake equation that this author regarded as 
"too simplistic" and improved mathematically in his paper #IAC-08-A4.1.4, entitled 
"The Statistical Drake Equation" and presented on October ist, 2008, at the 59th 

International Astronautical Congress (IAC) held in Glasgow, Scotland, UK, September 
29th thru October 3rd , 2008. That paper is attached herewith as Appendix B. Newcomers 
to SETI and to the Drake equation, however, may find that paper too difficult to be 
understood mathematically at a first reading. Thus, I shall now explain the content of 
that paper "by speaking easily." I thank the reader for his or her attention. 

S. The Statistical Drake Equation 

We start by an example. 

Consider the first independent variable in the Drake equation (7), i.e., Ns, the number 
of stars in the Milky Way galaxy. Astronomers tell us that approximately there should 
be about 350 millions stars in the galaxy. Of course, nobody has counted (or even seen 
in the photographic plates) all the stars in the galaxy! There are too many practical 
difficulties preventing us from doing so: just to name one, the dust clouds that don't 
allow us to see even the Galactic Bulge (i.e. the central region of the galaxy) in the 
visible light (although we may "see it" at radio frequencies like the famous neutral 
hydrogen line at 1420 MHz). So, it doesn't make any sense to say that Ns = 350 x 106, 

or, say (even worse) that the number of stars in the galaxy is (say) 354,233,321, or 
similar fanciful exact integer numbers. That is just silly and non-scientific. Much more 
scientific, on the contrary, is to say that the number of stars in the galaxy is 350 million 
plus or minus, say, 50 millions (or whatever values the astronomers may regard as 
more appropriate, since this is just an example to let the reader understand the 
difficulty). 

Thus, it makes sense to REPLACE each of the seven independent variables in the Drake 
equation (7) by a MEAN VALUE (350 millions, in the above example) PLUS OR MINUS A 
CERTAIN STANDARD DEVIATION (SO millions, in the above example). 

By doing so, we have made a great step ahead: we have abandoned the too-simplistic 
equation (7) and replaced it by something more sophisticated and scientifically more 
serious: the STATISTICAL Drake equation. In other words, we have transformed the 
classical and simplistic Drake equation (7) into an advanced statistical tool for the 
investigation of a host of facts hardly known to us in detail. In other words still: 

• We replace each independent variable in (7) by a RANDOM VARIABLE, labeled 
D, (from Drake). 

• We assume that the MEAN VALUE of each Di is the same numerical value previously 
attributed to the corresponding independent variable in (7). 

• But now we also ADD A STANDARD DEVIATION un, on each side of the mean value, 

that is provided by the knowledge gathered by scientists in each discipline 
encompassed by each D,. 

11 
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Having so done, the next question is: 

How can we find out the PROBABILITY DISTRIBUTION for each D,? 

For instance, shall that be a Gaussian, or what? 

This is a difficult question, for nobody knows, for instance, the probability distribution of 
the number of stars in the galaxy, not to mention the probability distribution of the 
other six variables in the Drake equation (7). 

There is a brilliant way to get around this difficulty, though. 

We start by excluding the Gaussian because each variable in the Drake equation is a 
POSITIVE (or, more precisely, a non-negative) random variable, while the Gaussian 
applies to REAL random variables only. So, the Gaussian is out. Then, one might 
consider the large class of well-studied and positive probability densities called "the 
gamma distributions," but it is then unclear why one should adopt the gamma 
distributions and not any other. The solution to this apparent conundrum comes from 
Shannon's Information Theory and a theorem that he proved in 1948: "The probability 
distribution having maximum entropy(= uncertainty) over any FINITE range of real 
values is the UNIFORM distribution over that range," This is proven in Appendix A of the 
present document. 

So, at this point, we assume that each of the seven D1 in (7) is a UNIFORM random 
variable, whose mean value and standard deviation is known by the scientists working 
in the respective field (let it be astronomy, or biology, or sociology). Notice that, for 
such a uniform distribution, the knowledge of the mean value 1-'n. and of the standard 

deviation rr/), automatically determines the RANGE of that random variable in between 

its lower (called a,) and upper (called h;) limits: in fact these limits are given by the 
equations 

(the "surprising" factor .Ji in the above equations comes from the definitions of mean 
value and standard deviation: please see equations (12), (15) and (17) in Appendix B 
for the relevant proof). So the uniform distribution of each random variable D, is 
perfectly determined by its mean value and standard deviation, and so are all its other 
properties. 

The next problem is the following: 

OK, since we now know everything about each uniformly distributed D,, what is the 
probability distribution of N , given that N is the product (7) of all the D,? 

In other words, not only do we want to find the analytical expression of the probability 
density function of N, but we also want to relate its mean value flN to all mean values 

Jin, of the D,, and its standard deviation rrN to all standard deviations rrn, of the D, . 

12 
UNCLASSIFIED/ /f81il 8fFl&l1l1k I :iii ADIi X 

(8) 



UNCLASSIFIED/ ;(FQA: QFFl&I.«1k WliEii IU.klf 

This is a difficult problem. 

It occupied the author's mind for no less than about ten years (1997-2007). 

It is actually an ANALYTICALLY UNSOLVABLE problem, in that, to the best of this 
author's knowledge, it is IMPOSSIBLE to find an analytic expression for any FINITE 
PRODUCT of uniform random variables1J

1
• This result is proven in Sections 2 thru 3.3 of 

Appendix B (unfortunately!). 

6. Solving the Statistical Drake Equation By Virtue of the 
Central Limit Theorem (CL T} of Statistics 

The solution to the problem of finding the analytical expression for the probability 
density function of Nin the statistical Drake equation was found by this author in 
September 2007. The key steps are the following: 

• Take the natural logs of both sides of the statistical Drake equation (7). This 
changes the product into a sum. 

• The mean values and standard deviations of the logs of the random variables D, 

may all be expressed analytically in terms of the mean values and standard 
deviations of the D, . 

• Recall the Central Limit Theorem (CLT) of statistics, stating that (loosely speaking) if 
you have a SUM of independent random variables, each of which is ARBITRARILY 
DISTRIBUTED (hence, also including uniformly distributed), then, when the number 
of terms in the sum increases indefinitely (i.e. for a sum of random variables 
infinitely long) ... the SUM RANDDM VARIABLE TENDS TO A GAUSSIAN. 

• Thus, the natural log of N tends to a Gaussian. 

• Thus, N tends to the LOGNORMAL DISTRIBUTION. 

• The mean value and standard deviations of this lognormal distribution of N may all 
be expressed analytically in terms of the mean values and standard deviations of 
the logs of the D

1 
already found previously. 

This result is fundamental. 

All the relevant equations are summarized in the following Table 1. This table is actually 
the same as Table 2 of the author's original paper IAC-08-A4.1.4, entitled "The 
Statistical Drake Equation" and presented by him at the International Astronautical 
Congress (IAC) held in Glasgow, UK, on October Pt, 2008. This original paper is 
reproduced in Appendix B. 

To sum up, not only is it found that N approaches the completely known lognormal 
distribution for an INFINITY of factors in the statistical Drake equation (7), but the way 
is paved to further applications by removing the condition that the number of terms in 
the product (7) must be FINITE. 

13 
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This possibility of ADDING ANY NUMBER OF FACTORS IN THE DRAKE EQUATION (7) 
was not envisaged, of course, by Frank Drake back in 1961, when "summarizing" the 
evolution of life in the galaxy in SEVEN simple STEPS. But today, the number of factors 
in the Drake equation should already be increased: for instance, there is no mention in 
the original Drake equation of the possibility that asteroidal impacts might destroy the 
life on Earth at any time, and this is because the demise of the dinosaurs at the K/T 
impact had not been yet understood by scientists in 1961, and was so only in 1980! 

In practice, the number of factors should INCREASE as much as necessary in order to 
get better and better estimates of N as long as our scientific knowledge increases. This 
is called the "Data Enrichment Principle" and believe should be the next important goal 
in the study of the statistical Drake equation. 

Finally, a numerical example explaining how the statistical Drake equation works in the 
practice will be given in the next section. 

14 
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Table 1. Summary of the Properties of the Log normal Distribution That Applies 
to the Random Variable N = Number of ET Communicating Civilizations in the 

Galaxy 

Random variable 

Probability distribution 
Probability density function 

Mean value 

Variance 

Standard deviation 

All the moments, i.e. k-th moment 

Mode ( = abscissa of the log normal peak) 

Value of the Mode Peak 

Median ( = fifty-fifty probability value for 
N) 

Skewness 

Kurtosis 

Expression of .u in terms of the lower (ai) 

and upper (b1) limits of the Drake 
uniform input random variables Di 
Expression of a 2 in terms of the lower (a,) 
and upper (bi) limits of the Drake 
uniform inout random variables D, 

N = number of communicating ET 
civilizations in qalaxy 
Loqnormal 

(in(,i) ,11)' 

= _ ,/I ,-cr-
11 m,Je - 11 pcak - ( < 

" 
j . ( 1 -u ----:;-

N 11,,.,dc)= ~ ·e • ·e -
V21T /J' 

nrdian = m = e·" 

(11;;:: 0) 

, _ ~ , _ ~I- a,b,[h,(b,)-h,(a;)]' 
a - ,t,...PY - £..J 

1-l ' 1-l (b,. - (I, f 

7. An Example Explaining the Statistical Drake Equation 

To understand how things work in practice for the statistical Drake equation, please 
consider the following table 2. It is made up of three columns: 

• The first column on the left lists the seven input sheer numbers that also become 

• The mean values (middle column). 

• Finally the last column on the right lists the seven input standard deviations. 

15 
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The bottom line is the classical Drake equation (7). We see that, for this particular set 
of seven inputs, the classical Drake equation (i.e. the product of the seven numbers) 
yields a total of 3500 communicating extraterrestrial civilizations existing in the galaxy 
right now. 

"'~ C 350 10' ~t-..:s := Ks cr-..: s C 1 10
9 

<o 
fj, 

100 
pfj, C fj, 

10 
crfj, C 

100 

n, C 1 ,m, C n, crn, C 

j} 
'.'O 

fl C p.fl -= fl 
100 

10 
crfl C -

100 

'° fi C pfi := fi 
100 

10 
crfi C 

100 

20 
fr C ~tfc C fr 

100 

10 
otC C 

100 

10000 
fL C pfL := fl. 

10 11J 

1000 
crfL C 

1010 

-..:.=Xsl.pneflfifctl.. " - 3500 

Table 2. Input Values (i.e. mean values and standard deviations) for the Seven Drake Uniform Random 
Variables Di . The first column on the left lists the seven input sheer numbers that also become the mean values 
(middle column). Finally the last column on the right lists the seven input standard deviations. The bottom line is 
the classical Drake equation (7). 

The statistical Drake equation, however, provides a much more articulated answer than 
just the above sheer number N = 3500. In fact, a MathCad code written by this author 
and capable of performing all the numerical calculations required by the statistical 
Drake equation for a given set of seven input mean values plus seven input standard 
deviations, yields for N the log normal distribution (thin curve) plotted in Figure 2. We 
see immediately that the peak of this thin curve (i.e. the mode) falls at about 

n,mJe = n
1
wak = e1-1 e-cr "'250 (this is equation (99) of Appendix B), while the median (fifty

fifty value splitting the lognormal density in two parts with equal undergoing areas) falls 
at about nmxlLan = c1-1 "'1740 . These seem to be smaller values than N = 3500 provided by 
the classical Drake equations, but it's a wrong impression due to a poor "intuitive" 
understanding of what statistics is! In fact, neither the mode nor the median are the 
"really important" values: the really important value for N is the MEAN VALUE! Now if 
you look at the thin curve in Figure 2 below (i.e. the lognormal distribution arising from 
the Central Limit Theorem), you see that this curve has a LONG TAIL ON THE RIGHT! In 
other words, it does NOT immediately go down to nearly zero beyond the peak of the 
mode. Thus, when you actually compute the mean value, you should not be too 
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surprised to find out that it equals (N)=e·"e' :::e4589.559 ~ 4590 communicating 

civilizations now in the galaxy. This is the important number, and it is HIGHER than the 
3500 provided by the classical Drake equation. Thus, in conclusion, THE STATISTICAL 
EXTENSION of the classical Drake equation INCREASES OUR HOPES to find an 
extraterrestrial civilization! 

z 5 ·10-4 

'o 

~ 

C 

2 · I 0-4 " so 
.s 
0 

I · I 0-4 ~ 

0.. 

PROBABILITY DENSITY FUNCTION OF N 

IOOO 2000 3000 4000 

N;::; Number of ET Civilizations in Galaxy 

Figure 2. Comparing the Two Probability Density Functions of the Random Variable N Found {l} 
Without Resorting to the CL Tat All (thick curve} and (2) Using the CL T and the Relevant Log normal 
Approximation {thin curve}. 

Even more so our hopes are increased when we go on to consider the standard 
deviation associated with the mean value 4590. In fact, the standard deviation is given 

by equation (97) of Appendix B. This yields a-,\' =eP e ~- .Jeer' -I= 11195 and so the 

expected number of N may actually be even much higher than the 4590 provided by 
the mean value alone! The "upper limit of the one-sigma confidence interval" (as 
statisticians call it), i.e. the sum 4590+11195 = 15,785, yields a higher number still! 
(Note: the "lower limit of the one-sigma confidence interval is ZERO because the 
lognormal distribution is POSITIVE (or, more correctly, non-negative)). Finally, the 
reader should note that the thick curve depicted in Figure 2 is just the NUMERICAL 
solution of the statistical Drake equation for a FINITE number of 7 input factors. Figure 
2 actually shows that this curve "is well interpolated" by the lognormal distribution (thin 
curve), i.e., by the neat analytical expression provided by the Central Limit Theorem for 
an INFINITE number of factors in the Drake equation. That is, in conclusion, Figure 2 
visually shows that taking 7 factors or an infinity of factors "is almost the same thing" 
already for a value as small as 7. 
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8. Finding the Probability Distribution of the Et-Distance By 
Virtue of the Statistical Drake Equation 

Having solved the statistical Drake equation by finding the lognormal distribution, we 
are now in a position to solve the ET-DISTANCE problem by resorting to statistics again, 
rather than just to the purely deterministic Distance Law (5), as we did in Section 2. 
This is "scientifically more serious" than just the purely deterministic Distance Law (5) 
inasmuch as the new statistical Distance Law will yield a PROBABILITY DENSITY for the 
Distance, with the relevant mean value and standard deviation. In other words, the 
Distance Law (5) itself becomes a random variable whose probability distribution, mean 
value and standard deviation must be computed by "replacing" into (5) the fact that N 
is now known to follow the lognormal distribution. This is mathematically described in 
detail in Section 7 of Appendix A. 

The important new result is the PROBABILITY DENSITY FOR THE DISTANCE, the 
equation of which is 

r hI oR,\,./,,.,. J, r 
fET_D1atan..,(r) =~-,Ji; CT· e 

2u2 

holding for r2'.0. This is equation (114) of Appendix B. 

Starting from this equation, the MEAN VALUE OF THE random variable ET _DISTANCE is 
computed as 

( 9) 

_i!_ er 

(ET_Distance)=Ce 3 e 18 (10) 

which is equation (119) of Appendix B, and finally the ET_DISTANCE STANDARD 
DEVIATION 

-• "--~ - '.' IS 'J 
al'."I_Di,ta,rn, - Ce e e - ! (11) 

which is equation (123) of Appendix B. Of course, all other descriptive statistical 
quantities, such as moments, cumulants etc. can be computed upon starting from the 
probability density (9), and the result is Table two hereafter, that is Table 3 of Appendix 
B. 

Finally, to complete this section, as well as this "introduction to the statistical Drake 
equation," the numerical values that equations (10) and (11) yield for the Input Table 1 
are determined. They are, respectively: 

-

r,"""" ,·"iuc = Ce 3 e 18 
::e 2.670 light years (12) 
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which is equation (153) of Appendix B, and 

"u' ~ 
a =Ce-·3 e 18 ~e 9 -1"'1309 lightvear,, 

ET_Di,t.imr ' • (13) 

which is equation (154) of Appendix B. 
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Table 2. Summary of the Properties of the Probability Distribution That Applies 
to the Random Variable ET_Distance Yielding the (average) Distance Between 

Any Two Neighboring Communicating Civilizations in the Galaxy 

Random variable 

Probability distribution 
Probability density function 

Numerical constant C related to the Milky 
Wav size 
Mean value 

Variance 

Standard deviation 

All the moments, i.e. k-th moment 

Mode ( = abscissa of the log normal peak) 

Value of the Mode Peak 

Median ( = fifty-fifty probability value for N) 

Skewness 

Kurtosis 

Expression of µin terms of the lower (ai) 
and upper (bi) limits of the Drake uniform 
input random variables Di 

Expression of cr
2
in terms of the lower (ai) 

and upper (bi) limits of the Drake uniform 
inout random variables Di 

20 

ET_Distance between any two neighboring 
ET civilizations in galaxy assuming they are 
UNIFORMLY distributed throughout the 
whole oalaxv volume. 
Unnamed 

3 
/ET Dtstan,.,(r) = -

- ' 

JI ,,-

(Er_ DiS lancc) =Ce '.1e 18 

! /' k' a

(Ef_DiS(ance') = ck e :i e 18 

- -
r,wdc = rp,ak = Ce J e '! 

Peak Value of .r~_I_D1>1'm«:(r) = 

] JI (T-

= fET D,,urn«· (,.nwk l = - ·e.1,elS 
c5;cr 

" 
me<lian = m = Ce -1 

K .:!....':_ " ~ 
--'-=e '! +2e :i +3e 'J -6 
(K, )' 
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It is clarifying to draw the graph of the ET_Distance probability density (9): 

5.63·10-20 

] 2.25 · I 0-2o 

DISTANCE OF NEAREST ET_CIVILIZATION 

/ " .. I '\ 
J I\. 

I ' "' J 

J ...... ........ 
-,oo -1000 1500 2000 2500 3000 3500 4000 4500 )000 

ET _Distance from Earth (light year~) 

Figure 3. The Probability of Finding the Nearest Extraterrestrial Civilization at the distance r From Earth 
(in light years) if the Values Assumed in the Drake Equation are Those Shown in Input Table 1. The 

relevant probability density function fET_Disi.u,.,(r) is given by equation (9). Its mode (peak abscissa) equals 1933 

light years, but its mean value is higher since the curve has a long tail on the right: the mean value equals in fact 
2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FDR SETI, 
inasmuch as the nearest ET galaxy civilization might lie at just 1 sigma-= 2670-1309-= 1361 light years from us. 

From Figure 3 we see that the probability of finding extraterrestrials is practically zero 
up to a distance of about 500 light years from Earth. Then it starts increasing with the 
increasing distance from Earth, and reaches its maximum at 

_!:!. _.':..._ 
r,md~ = r,,mk =le :i e '! "'1,933 light years. 

This is the MOST LIKELY VALUE of the distance at which we can expect to find the 
nearest extraterrestrial civilization. 

(14) 

It is not the mean value of the probability distribution (9) for (ET o"u,,,.,,V). In fact, the 

probability density (9) has an infinite tail on the right, as clearly shown in Figure 3, and 
hence its mean value must be higher than its peak value. As given by (10) and (12), its 

mean value is 1;"""" lY,1,," = Ce ''-" 1~ "'2670 light year.;. This is the MEAN (value of the) 

DISTANCE at which we can expect to find extraterrestrials. 
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After having found the above two distances (1933 and 2670 light years, respectively), 
the next natural question that arises is: "what is the range, back and forth around the 
mean value of the distance, within which we can expect to find extraterrestrials with 
"the highest hopes?" The answer to this question is given by the notion of standard 
deviation that we already found to be given by (11) and (13), 

"" r;;--
a . =Ce 0 e 18 Ve~ -l:::cl309 Jio-htyt:ars. 

Ll_l)i,(all(c ,;, 

More precisely, this is the so-called 1-sigma (distance) level. Probability theory then 
shows that the nearest extraterrestrial civilization is expected to be located within this 
range, i.e. within the two distances of (2670-1309) = 1361 light years and 
(2670+1309) = 3979 light years, with probability given by the integral of .fl-'·i:_D;,,,,n.,(r) 

taken in between these two lower and upper limits, that is: 

(15) 

In plain words: with 75 percent probability, the nearest extraterrestrial civilization is 
located in between the distances of 1361 and 3979 light years from us, having assumed 
the input values to the Drake Equation given by table 1. If we change those input 
values, then all the numbers change again, of course. 

9. The "Data Enrichment Principle" as the Best CL T 
Consequence Upon the Statistical Drake Equation (Any 
Number of Factors Allowed) 

As a fitting climax to all the statistical equations developed so far, let us now state our 
"DATA ENRICHMENT PRINCIPLE." It simply states that "The Higher the Number of 
Factors in the Statistical Drake equation, The Better." 

Put in this simple way, it simply looks like a new way of saying that the CLT lets the 
random variable Y approach the normal distribution when the number of terms in the 
sum (4) approaches infinity. And this is the case, indeed. 

10. Conclusions 

We have sought to extend the classical Drake equation to let it encompass Statistics 
and Probability. 

This approach appears to pave the way to future, more profound investigations 
intended not only to associate "error bars" to each factor in the Drake equation, but 
especially to increase the number of factors themselves. In fact, this seems to be the 
only way to incorporate into the Drake equation more and more new scientific 
information as soon as it becomes available. In the long run, the Statistical Drake 
equation might just become a huge computer code, growing in size and especially in 
the depth of the scientific information it contains. It would thus be Humanity's first 
"Encyclopaedia Galactica." 
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Unfortunately, to extend the Drake equation to Statistics, it was necessary to use a 
mathematical apparatus that is more sophisticated than just the simple product of 
seven numbers. 
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Appendix A: Proof of Shannon's 1948 Theorem Stating 
That the Uniform Distribution is the "Most Uncertain" One 
Over a Finite Range of Values 

Information Theory was initiated by Claude Shannon (1916-2001) in his well-known 
1948 two papers: 

F.~,-.::.:~:I w,:h :o,:•:c_i'.'lJ.c ~o:t I'< B.:." '.:.::""' -'"''· •c:.· ~"··"'·'' 
·.:,: :· ;p ;·µ:; o:!--.,''. 1,~: O::ot>e,. lS-3 

A :\farhenrnrical Theo1'\" of Communication 

In this Appendix, we wish to draw attention to a couple of theorems that Shannon 
proves on pages 36 and 37 of his work, and read, respectively (note that Shannon 
omits the upper and lower limits of all integrals in the first theorem: they are minus 
infinity and plus infinity, respectively): 

and 
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5. Let p:x1 be a cue-duueu',1oual d:;r11'::mh011 :iie :'ouudp -'-' g:in:1g a lilllXmmmeutr::,py -;ub_1ec1 to tlle 
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ILY : ,, hm:ted to J. l1J.li l:.:ae ,:p,:_, , - ,) -f::i1 _y , :}1 and the fu ,,t moment c:' _\ 1~ ftxe-d at :; 

fae:1 the u1.1Xl.llu:.m. eu:iopy -:--::cm,, \,;lien 

p:x: 1 ' .1 - -t' 

' 

Now, we wish to point out that there is a third possible case, other than the two given 
by Shannon. This is the case when the probability density function p(x) is limited to a 

FINITE INTERVAL as x s b. This is obviously the case with any physical POSITIVE 
random variable, such as a distance, or the number N of extraterrestrial communicating 
civilizations in the ,". And it is easy to prove that for any such finite random variable the 
maximum entropy distribution is the UNIFORM distribution over as x sh. Shannon did 
not bother to prove this simple theorem in his 1948 papers since he probably regarded 
it as too trivial. But we prefer to point out this theorem since, in the language of the 
statistical Drake equation, it sounds like: 

"Since we don't know what the probability distribution of any one of the Drake random 
variables D, is, it is safer to assume that each of them has the maximum possible 

entropy over a, sxsb,, i.e., that D, is UNIFORMLY distributed there. 

The proof of this theorem is along the same lines as for the previous two cases 
discussed by Shannon: 

We start by assuming that a; SxSb,. 

We then form the linear combination of the entropy integral plus the normalization 
condition for D; 

where A is a Lagrange multiplier. 

Performing the variation, one finds 

-logp(x)-1 +/4 =0 that is: p(x)= ,,; 1 _ 

Applying the normalization condition (constraint) to the last expression for p(x) yields 

J
,, ( ) JI>, )-1 )-IJI>, )-1( ) l= px dx= e· dx=e· d.1.·=e· h,-a, 
"' "' "' 

that yields 

b, -(1
1 
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and finally 

p{x)=-1- with a, :,;;,\:::::h1 h, -a
1 

showing that the maximum-entropy probability distribution over any FINITE interval 
a, :::::x:::::h, is the UNIFORM distribution. 
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Appendix B: Original Text of the Author's Paper #IAC-08-
A4.1.4 Titled the Statistical Drake Equation 

IAC-08-A4.1.4 

THE STATISTICAL DRAKE EQUATION 
Claudio Maccone 

Co-Vice Chuir, St.:11 Permanent Study Group, lnternational Academy of lls!rvnu11lics 

Address: Via Martorelfi, 43 - Torino (Turin) 10155 - Italy 

URL: hllp://www.macconc.com/ - E-mail: clmaccon@'libcro.it 

ABSTRACT. We provide the statistical generalization of the Drake e4uation. 

From a simple product of ~even po~itive numbers, the Drake equation is now turned into the product of seven 
positive random variables. We call this "the Statistical Drake Equation," The mathematical consequences of 
this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CL T) of 
Statistics. In loo~e terms, the CL T states that the sum of any number of independent random variables, each of 
which may be ARBITRARILY distributed. approaches a Gaussian (i.e. normal) random variable. This is called 
the Lyapunov Form of the CLT or the Lindeberg Form of the CLT, depending on the mathematical constraints 
assumed on the third moments of the various probability distributions. In conclusion, we show that: 
I) The new random variable N, yielding the number of communicating civilizations in the Galaxy, follmvs the 

LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the 
ordinary Nin the Drake equation. The ~tandard deviation, mode, and all the moments of this lognormal N 
are found also. 

2) The seven factors in the ordinary Drake equation now become seven positive random variables. The 
probability distribution of each random variable may be ARBITRARY. The CLT in the so-called 
Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for 
that. In other ,vords, the CLT "translates" into our statistical Drake equation by allmving an arbitrary 
probability distrihution for each factor. This is both physically realistic and practically very useful, of 
cour~e. 

3) An application of our statistical Drake equation then follows. The (average) DISTANCE between any two 
neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to 
the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the 
relevant probability density function. apparently previously unknown and dubbed "Maccone distribution" 
by Paul Davies. 

4) DATA ENRICHMENT PRINCIPLE. It should be noticed that /\NY positive numher of random variables 
in the Statistical Drake Equation is compatible with the CLT. So, our generalization allows for many more 
factors to be added in the future as long as more refined scientific knowledge about each factor will be 
known to the scientists. This capability to make room for more future factors in the statistical Drake 
equation we call the "Data Enrichment Principle", and we regard it as the key to more profound future 
re~ults in the fields of Aqrohiology and SETI. 

Finally. a practical example is given of how our ~tatistical Drake equation works numerically. We work out in 
detail the case where each of the seven random variables is uniformly distributed around its own mean value 
and has a given standard deviation. For instance, the number of stars in the Galaxy is assumed to be uniformly 
distributed around (say) 350 billions with a standard deviation of (say) 1 billion. Then, the resulting lognormal 
distribution of N is computed numerically by virtue of a MathCad file that the author has written. This shows 
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that the mean value of the lognormal random variable N is actually of the same order as the classical N given 
by the ordinary Drake equation, as one might expect from a good statistical generalization. 

I. INTRODUCTION 

The Drake equation is a now famous result 
(see ref. [ l] for the Wikipedia summary) in the 
fields of SETI (the Search for ExtraTerrestial 
Intelligence, see ref. [2J) and A~trohiology (~ee ref. 
[3J). Devised in 1960, the Drake equation was the 
fiN \Cientific attempt to estimate the number N of 
ExtraTerrestrial civilizatiom in the Galaxy with 
which we might come in contact. Frank D. Drake 
(see ref. [41) proposed it as the product of seven 
factors: 

N = N.1·· /j! -ne· .fl ·.Ii· _fi-· fl .. (I) 

Where: 
I) N1· i~ the estimated number of stars in our 

Galaxy. 
2) fp is the fraction (= percentage) of such stars 

that have planets. 
3) ne is the number "Earth-type'' such planets 

around the given star: in other words, ne is 
number of planets, in a given stellar system, 
on which the chemical condition~ exist for life 
to begin its course: they arc ''ready for life," 

4) .fl is fraction (- pcn:cntagc) of such "ready for 
life" planets on which lite actually starts and 
grows up (but not yet to the "intelligence" 
level). 

5) .fi i~ the fraction (= percentage) of such 
''planets with life fonns" that actually evolve 
until some form of "intelligent civilization'' 
emerges (like the firsL historic human 
civilizations on Earth). 

6) .fc is the fraction (= percentage) of such 
"planets ,vith civilizations" ,vhere the 
civilizations evolve to the point of being able 
to communicate acrms the interstellar 
distances with other (al leas!) similarly 
evolved civilizations. As far as we know in 
2008, this meam that they must be aware of 
the Maxwell equation~ governing radio waves, 
as well as of computers and radioa\tronomy 
(at lea~t). 

7) .fL is the fraction of galactic civiliza!iom alive 
at the time when we, poor humans, attempt to 
pick up their radio signals (that they throw out 
into space just as we have done since 1900, 
,vhen Marconi started the transatlantic 
trammis~ions). In other words. ft is the 
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number of civilizations nmv transmitting and 
receiving, and this implies an estimate of·'how 
long will a tedmological civilization live?" 
!ha! nobody can make at the moment. Also. 
are they going to destroy themselves in a 
nuclear war, and thus live only a few decade~ 
of technological civilization? Or are they 
~lowly becoming wiser, reject war, speak a 
~ingle language (like English today). and 
merge into a single "nation'', thu~ living in 
peace for ages? Or will robots take over one 
day making "flesh animals" disappear forever 
(the so-called '·post-biological universe")? 

No one knows .. 

But let us go back to the Drake equation ( I). 
In the fifty years of its existence, a number of 
suggestions have been put forward about the 
different numeric values of its seven factors. Of 
course, every different set of these seven input 
numbers yields a different value for N and we can 
endlessly play that way. Bui we claim that these 
are like ... children plays! 

We claim the classical Drake equation (I), as 
we ~hall call it from now on to di~tinguish it from 
our statistical Drake equation to he introduced in 
the coming sections, well, the classical Drake 
equation is scientifically inadequate in one regard 
at least: it just handles sheer numbers and does not 
associate an error bar to each of its seven factors. 
At the very least, we want to associate an error 
bar to each D;. 

Well, we have thus reached STEP ONE in our 
improvement of the classical Drake equation: 
replace each sheer number by a probability 
di.~tribation! 

The reader is now asked to look al the Bow 
chart in the next page as a guide lo this paper, 
please. 

2. STEP I, LETTING EACH FACTOR 
BECOME A RANDOM VARIABLE 

In this paper we adopt the notations of the 
great book "Probability, Random Variables and 
Stochastic Processes" by Athanasios Papoulis 
( 1921-2002), now re-published as Papoulis-Pillai, 
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ref. [51. The advantage of this notation is that it 
makes a neat distinction between probabilistic (or 
statistical: it's the same thing here) variables, 
ahvays denoted by capital.~, from non-probabilistic 
(or "dctcm1inistic") iariablcs. always denoted by 
lower-case letter\. Adopting the Papoulis notation 
also is a tribute lo him by this author. who wa, a 
Fulbright Grantee in the United States with him at 
the Polytechnic Institute (now Polytechnic 
University) of New York in the years I 977-78-79. 

We thu~ introduce seven new (po~itive) 
random variables D, ("rr from "'Drake") defined 

as 

j~:: :: 
D_1 =ne 

D4 -= fl 
D'i = ji 
Dh =F 
/J7 = fL 

(2) 

~o 1hat uur STATISTICAL Drake equation may be 
~imply rewritwn as 
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(3) 

Of course. N now becomes a (positive) random 
variable too. having its own (positive) mean value 
and ~tandard deviation. Ju~t as each of the D, has its 

nwn (po~i!ivc) mean \'Hlue and standard dc\·iatinn .. 
. . . the natural quest inn then arises: how arc the sci en 
mL:an ialucs un thL: right rdatL:d HI 1hc mrnn ialue on 
the left? 

and how are the seven standard deviations on the 
right related to the standard deviation on the left'! 

Just take the next step. 

3. STEP 2, INTRODUCING LOGS TO 
CHANGE THE PRODUCT INTO A SUM 

Prm.luc1s uf random variable~ arc 1101 ca~y HI 

handk in prubabili1y theory. h is actually much 
L:asicr HI handk sums of random variables, rathL:r 
than prnducts, because: 

l) The probability dcnsi1y uf the sum uf two or 
more independent random variables i~ the 
rnnvolution of the relevant probability 
den~itie~ (wony not about the equations, 
right now). 

2) The Fourier transform of the convolution 
~imply i~ the produL:t of the Fourier 
transforms (again, worry not about the 
equations, at this point) 
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I 1. Introduction I 
I 

2. Step 1: Letting each factor become a random 

2.1. Step 2: Introducing logs to change the product into a I 
2.2. Step 3: The transformation law of random variab1es. I 

I 

3. Step 4: Assuming the easiest input distribution for 
each D,: the uniform distribution. 

3.1. Step 5: A numerical example of the Statistical Drake equation 
with uniform distributions for the Drake random 
variables D,. 

I 
3.2. Step 6: Computing the logs of the 

7 uniform1y distributed 
Drake random variables 
D,. 

3.3. Step 7: Finding the probability 
density function of N, but 
only numerically not 
analytica11y. 

I DEAD END! I 4. The Central Limit Theorem (CL T) of Statistics. 

,. LDGNDRMAL distribution as the probability 
distribution of the number N of 
communicating ExtraTerrestrial Civilizations 
in the Galaxy, 

•- Comparing the CL T results with the Non-CLT 
results, and discarding the Non-CLT approach. 

,. DISTANCE to the nearest ExtraTerrestrial 
Civilization as a probability distribution (Paul 
Davies dubbed that the Maccone distribution). 

,., Classical, non-probabilistic derivation of the 
Distance to the nearest ET Civilization. 

,., Probabilistic derivation of probability density 
function for nearest ET Civilization Distance. 

I 
,., Statistical properties of the distribution. 

, .• Numerical example of the distribution. 

,. DATA ENRICHMENT PRINCIPLE as the best 
CL T consequence upon the Drake equation: 
i!..!11". number of factors allowed for. 
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So, let us take the natural log~ of both ~ides of the 
Stati~tical Drake equation (3) and change it intu a 
~um: 

It is now convenient to introduce eight new (positive) 
random variables defined as follows: 

/Y 0 h,(N) 

[Y, c!n(D,) ;c!, .. J 
(5) 

Upon inversion, the first equation of (5) yields the 
important equation, that will he used in the ~cqucl 

' N =e . 

We are now ready to take STEP THREE. 

(6) 

STEP 3: THE TRANSFORMATION LAW 
OF RANDOM VARIABLES 

So far we did not mention nt all the problem: 
"which probability di~tribution ~hnll we attach to 
each of the seven (positive) random variables D, '!'. 

It is not casy to answer thi~ qucstion because wc 
do not ha,c thc lca~t scientific clue tu what 
probability distributions fit at best tu cach of the 
~even points li~ted in Section I. 

Yet, at lea~t one trivial error must be avoided: 
clniming that each of those seven random variables 
must have a Gau~~ian (i.e. normal) di~tribution. In 
fact, the Gaussian distribution, having the well
known bell-~haped probability density function 

(7) 

has its independent variabk _v ranging between ---<:e 

and -7~ and so it can apply to a real random variahlc 
Y only, and never t(] pm·itive random variahlc~ like 
those in the ~tati~tical Drake equntion (3). Period. 

Searching again for probability den~ity functions 
thnt repre~ent po~itive random variable~. nn obvious 
choice would be the gammn di~tributions (see, for 
in~tance, ref. [6]). However, we di~cnrded this choice 
too because of a different rea~on: please keep in mmd 
that, according to (5). once we selected a particular 
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type of probability density function (pdf) for the Inst 
~cven uf cquatium (5), thcn we mu~t compute thc 
(new and different) pdf of the logs of such random 
variable~. And the pdf of these log~ certainly 1s not 
gamma-type any more. 

It is high tune now to remind the reader of a 
certain theorem that 1s proved in probability courses, 
hut, unfortunately, doe~ not seem to have a specific 
name. It i~ the tra11sformatio11 law (so we ~hall call 
it, ~ee, for instance, ref. [5 Jl allowing u~ to compute 
the pdf of a certain new random variahle Y that is a 
known functi(]n Y = g(X) (If another random 

variable X havmg a known pdf. In other word~, if the 
pdf fx (x) of a certain random variahle X i~ known, 

then the pdf fr (_r) of the new random variable Y. 

related to X hy the functional rclation~hip 

(8) 

can be calculated according: to this rule: 
I) First invert the corresponding: non-probab1li~t1c 

equation _\·=g(x) and denote by x,(_r) the 

various real roots resulting from the this 
mvers1011. 

2) 

3) 

Second, take notice whether these real roots may 
be either finitely- or infinitely-many. according 
to the nature of the function _I'= g(x). 
Third, the probability density function of Y i~ 
then given by the (finite or infinite) sum 

(9) 

where the summation extends to all roots x, (.r) and 

lx'(x,(r)~ is thc ab~olutc valuc of thc fir~l 

derivative of g(x) where the i-th root x, (_\') has 

bccn rcplaccd imtead of .r. 

Since we must use thi~ transformation law to tran~fer 
from the D; to the Yi = ln(DJ, it i~ clear that we 

need to start from n D, pdf that is ns ~irnple a~ 

po~~ihle. The gamma pdf is not responding to this 
need hecau~e the analytic express1on of the 
transformed pdf is very complicated (or, at lea~t, it 
looked so to this author in the fir~t instance). Aho, 
the gamma di~trihution ha~ two free parameters in it, 
and this ··complicates" ib application to the variuu~ 
mcanings of the Drake equation. In conclusion, we 
discarded the gamma distributiun~ and confined 
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ourselves to the simpler uniform di~tribution instead, 
as shown in the nesl ~ection. 

4. STEP 4, ASSUMING THE EASIEST 
INPUT DISTRIBUTION FOR EACH Di: 
THE UNIFORM DISTRIBUTION 

Let u.~ now suppose that each of the .~even D1 i.~ 
di.\·tributed UNIFORMLY in the interval ranging 
from the fower limit a

1 
:C: U to the upper limit 

h, 2 ui. 

This is the same as saying th.it the probability 
den~ity function of each of the seven Drake random 
variables D, has the equation 

funifrirmo{x)=--
1
- withOS:a; S:xS:h; (10) 

- ' b; -a, 

as it follows at once from the normalization condition 

I
,, 
'funiforrn_D, (x)dx= I. 

" 
(I)) 

Let us now consider the mean value of such 
uniform D, defined by 

I,, I I'' (unifonn_D,)= 'xfun,R,rrnD(x)dx=--- 'xdx 
", - ' b;-a, a, 

By W(1n.b (a~ it is intuitively ohviou~): the mean 
value of the uniform diMribution ~imply is the mean 
of the lowl:r plu~ upper limit of thl: iariablc range 

( ) 
u-+b. 

unifom1_D
1 

= -' -
2
-•. (]2) 

In order to find the variance (If the uniform 
distrihuti(]n, we first need finding the ~ec(]nd moment 

(uniform_o,
2
)= f"x 2 

/~nlfnun_o,(x)dx 
"· 

• • h,' - a; 

3(b, -a
1

) 
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_ (b, -a1 )(a,1 +a;b, +b,2) _ a,1 +a;b, +b,2 

3(h,-a,) 3 

The second moment of the uniform di~trihution is 
thus 

• • 
( 

.
1
. o') a,-+a,b;+b;-um om1 , = - 3 

(13) 

From (12 and (13) we may now denve the variance 
of the uniform distribution 

crJ,ufom_D, = ( uniform_D ,2 )-(uniform_D,) 
2 

a} +a,b, +b,2 (a 1 +h1 )2 (h, -a,)2 

3 4 12 
(14) 

Upon taking the ~quare root of both sides of (14), we 
finally obtain the standard deviation of the 111tiform 
distribution: 

h, - (I; 

2fj 
(15) 

We now wi~h t(] perform a calculation that is 
mathematically trivial, hut rather unexpected from 
the intuitive poinl of view, and very important for our 
applications to lhc stalistical Drakl: equation. Jusl 
cun~idl:r the lwu ~imultancuu~ equaliuns (12) and 
(15) 

1 

a +h 
(unifom1_D,) = ~ 

h -a 
(,Ullli<>rlLL_IJ, = ~fi/. 

Upon inverting: this trivial linear system, one fmds 

fa, = (unifonn_D; )- fi O"umt<nm o. 

1 h, = ( un ifonn_D;) + fi O"LLnikm,,_D, 

( 16) 

(17) 

Thi~ 1s of paramount importance for our application 
the Stati~tical Drake equation ina~much a~ it shows 
that: 
if one (scientifically) assigns the mean value a1td 
standard deviation of a certain Drake random 
variable D;, then the lower and 11pper limits of the 
relevant uniform distribution are given by the two 
equations (17), respectively. 
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In other words, there i~ a factor of ✓3 = 1.732 

included in the two equations ( 17) that is not obvious 
at all t(] human intuition, and mmt indeed he taken 
into account. 

The application of this result to the Statistical Drake 
equation is discussed in the next ~ccti(]n. 

3.1 STEP 5: A NL1MERICAL EXAMPLE 
OF THE STATISTICAL DRAKE 
EQUATION WITH llNIFORM 
DISTRIBUTIONS FOR THE DRAKE 
RANDOM VARIABLES D; 

The first variable Ns in the classical Drake 
equation (I) is the number uf stars in uur Galaxy. 
Nobody knows how many they arc exactly(!). Only 
statistical estimate~ can be made by a~tronomers, and 
they oscillate (say) mound n mean value of 350 
billions (if this value is indeed c:onect!). This being 
the situation, we nssume that our uniformly 
distributed random variable Ns has a mean value of 
350 billions minu~ or plus a standard deviation of 
(say) one billion (we don't care whether this number 
is ~cientifically the be~t estimate a~ of August 2008: 
we just want to set up a numerical example of our 
Stafotical Drake equation). In other words, we now 
assume that one has: 

{

( uniforrn_D 1 ) = 350 • 10 9 

O"untk1rn1_D
1 

=]. l0
9

• 
(18) 

Therefore, according to equation~ ( 17) the lower and 
upper limit of our uniform distribution for the 
rand(]m variable Ns=IJ, arc, respectively 

la.v, =(unifon11_D 1)-J3aur1it<>nll_D, =348.3-10'! 
r:; ') (19) 

h,v, =(unifmm_D,)+-v3au,,i,illm_D, =351.7-10 

Similarly we proceed for all the other six random 
variables in the Statistical Drake equation(]). 

For instance, we assume that the fraction of stars 
that have planet~ is 50%, i.e. 50/100, and this will he 
the mean value of the random variable fp=lh. We 
also assume that the relevant standard deviation will 
be JO%. i. e. that u

1
P = l(]Jl[K) Therefore, the 
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relevant lower and upper limits for the uniform 
distributiun of/jJ=D'- turn out lo be 

i (I.fl' : (uniform_D, )-✓3 O"uniln1m_D, 

lb 11 , - ( urntomi_D 2 ) + ✓3 a un,k>rm_D, 

= 0.327 

= 0.673 
(20) 

The next Drake random variable 1s the number 
ne of "Earth-type" planets in a given star system. 
Taking example from the Solar Sy~tem, since only 
the Earth is truly "Earth-type", the mean value of ne 
is clearly I. but the standard deviation 1s not zero if 
we a~wme that Mars also may be regarded as Earth
type. Since there are thus two Earth-type planets in 
the Solar System, we mu~t assume a standard 

deviation of I/ J3 = 0.577 to compensate the fJ 
appearing in ( 17) in order to !inally yield tv..o "Earth
typc" planets (Earth and Mars) for the upper limit of 
the random variable ne. In other words. we as~ume 
thnt 

j(1 1", =(unifom1_D_,)-✓3a""'k"m_D, =0 l
2

l) 

1b,1,, =(uniform_D,)+ ✓3aun,k>rm_D, =2 

The next four Drake random variables have even 
more "arbitrarily" assumed values that we simply 
assume for the sake of making up a numerical 
example of our Statistical Drake equation with 
uniform entry d1stribut1ons. So, we really make no 
assumption about the a.~tronomy, or the biology, or 
the .~ociology of the Drake equation: we ju.~t care 
about its mathematics. 

All (Jur as~umcd entries arc given in Table 1. 

Please notice that, had we a~~umcd all the 
standard dcviati(]ns to equal zem in Table 1, then our 
Statistical Drake equation (]) would have obviously 
reduced to the cla~sical Drake equation (I). and the 
resulting number of civiliLations in the Galaxy would 
have turned out to be 3500: 

(22) 

This is the important deterministic number that we 
will use in the sc4ucl of this paper for compari~on 
with our .~tati.~tical result~ on the mean value of N, 
i.e. (N). This will be explained in Section~ 3.3 and 5. 
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;-;-s C 350-10
9 

p;\s := Ks 0~S C I 10' 

50 
Ip C pip C Ip 

100 

IO 
Olp C 

100 

ne ,Llne C ne one C 

/3 
50 

fl C ,u.fl := fl 
100 

IO 
ofl C 

100 

20 
fi C ,Llfi := ti 

100 

IO 
ofi C 

100 

20 
fc ,u.fc = fc 

100 

IO 
ofc C 

100 

10000 
IL C ,ttL ·= tl. 

1010 
otL 

1000 
C 

1010 

:,;- .= "'.\"s Ip ne t1 fi fr tl. -=--· = 3500 

Table 1. Input values (i.e. mean values and ~tandan.l dcviati(lm) for the seven Drake uniform random variables IJ,. 
The first column (Ill the left list~ the seven input sheer numbers that alsn hccomc the mean values (middle cnlumn). 
finally the last C(llumn nn the right lists the seven input stam.lan.l dcviatinns. The bottom line is the classical Drake 
cquatiun ( I). 

3.2 STEP 6: COMPUTING THE LOGS 
OF THE 7 UNIFORMY 
DISTRIBUTED DRAKE RANDOM 
VARIABLESD; 

Intuitively speaking, the natural log of a 
uniformly distributed random variable may not be 
another uniformly distributed random variable! This 
is obvious from the trivial diagram of y = ln(x) 
~huwn below: 

Natural logarithm of x 

, 
2 3 4 5 

POSITIVE independent variable x 

Figure], The simpk functiun _,, = ln(xJ. 
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Su, if we have a uniformly di~tributcd random 
variable D, with lowcr limit a, and uppcr limit b,, the 
randmn variable 

must have it~ range limited in between thc luwcr limit 
fn(a,) and thc upper limit fn(b,J. In othcr word~, this 
arc thc luwcr and upper limit~ of the relevant 
probability den~ity function fl'. (.v). But what i~ the 

actual analytic cxprc~sion of ~uch a pdf?. To find it, 
wc mu~t rcsnrt tn thc gcncral tran~formation law for 
random variable~, dcfincd by cquation (9). Herc we 
ohviomly have 

(24) 

That, upon inversion, yields the single mot 

(25) 

On the other hand. differentiating (24) one gets 
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(26) 

where (25) wa~ already used in thc la~t stcp. By 
virtuc of the uniform prohahility density function 
( 10) and of (26), the general tramformation law (9) 
finally yields 

b
1 

- a
1 

(27) 

In other words, the requested pdf of Y, i~ 

i = I. .... 7 lm(a,)sy,ln(h,)I (28) 

Probability density functions of the natural logs of 
all the u11ifarmly di.~tributed Drake randam 
variable~· D, . 

This is indeed a positive function of.\· over the 
interval In(uJ :S: y :S: ln(hJ, as for every pdf, and it 1s 

casy lu sec thal its normaliLation cundition is 
fulfilled: 

... (29) 

Next we want to find the mean value and 
standard deviation of Y, , since these play a crucial 

role for fulurc dcvclopmcnl~. The mean ialuc (Y,) i~ 

given by 

i

ln(I> ) ( ) iln(I,, I v . e ,. 
(Y,)= 'v· f V dv= -·--d; 

ln(u,l • Y, - • ln(u,)b;-(1; • 

b, [In(b, )- I]- a, [1,;(u, )- I] 

b1 - 11, 
(30) 

This is thus the mean value of the nat11ral log of all 
the unifarmly di.~tributed Drake random variable.1· 
D, 
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In order to find the variance abo, we must first 
compute lhc mean value of the square of Y,, lhat is 

= h, [in 2 (h
1 
)- 2 ln (h1 )+ 2 ]- a, [tn 2 (a,)- 2 ln(a; )+ 2] 

h; -,1; 

... (32) 

The variance of Y; = 1n(D;) is now given by (32) 
minus the square of (31 ), that. after a few reductions. 
yield: 

2 a,h;[ln(h,)-ln(a,)]
2 

=a,n(n,l=l- ( )' 
h, -a, 

Whence the corresponding standard deviation 

(34) 

Let us now turn to another topic: the use of 
fouricr tran~forms, that, in probahility theory, arc 
called ·'characteristic functions," following again the 
notations of Papoulis (ref [51) we call "'characteristic 
function", <l>y_ (;) , of an assigned probability 

distribution Y1 , the Fourier transform of the relel'ant 

probability density function, that is (with j = µ) 

The use of characteristic function~ simplifies things 
greatly. For instance, the calculation of all moments 
of a known pdf becomes trivial if the relevant 
characteristic function is known, and greatly 
simplified also arc the proofs of important theorems 
of slalistics, like lhc Ccnlral Limit Theorem thal wc 
will use in Section 4. Anolhcr imporlanl rcsull i~ that 
thc characteristic function of lhc sum of a finitc 
numhcr of independent random variable~ is simply 
gi vcn by the product of the corresponding 
characteristic functions. This i~ just the case we arc 
facing in the Statistical Drake equation (3) and so we 
are now led to find the characteristic function of the 
random l'ariable Y1. i.e. 
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(b, -a, )(1 + g) 
(36) 

Thus, the characteri.~tic function of the natural log 
t~fthe Drake u11(fr1rm random variahle D; i.1· given by 

3.3 STEP 7: FINDING THE 
PROBABILITY DENSITY 
FUNCTION OF N, BUT ONLY 
NUMERICALLY NOT 
ANALYTICALLY 

(371 

Having found the characteristic functions 
<1\ (;) of the log~ of the ~even input random 

variables D, . we can now immediately fmd the 
characteri~tic function of the random variable Y = 
ln(N) defined by (5). In fact. by virtue of (4), of the 
well-known Fourier transform property stating that 
"the Fourier transform of a convolution is the product 
of the Fourier transforms··, and of (37). it 
immediately follow~ that cDv(!;) equals the product 

of the ~even (!Jr,(.;): 

The next ~lcp is to invert thi~ Fourier tran~form in 
order to get the probability density function of the 
rnndom variable Y = ln(N). In other word~, we mu~t 
rnmpute the following inverse Fourier tran~form 

(39) 
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Thi~ author rcgrL:b that he was unabk to computc the 
la~t integral analytically. He had to compute it 
1111merically for the particular values of the 14 u, and 
b, that follow from Table I and equations 17. The 
result wa~ the probability density function for Y = 
ln(N) plotted in the following Figure 2. 

PROB. DEJ\SITY FU"ICTION OF Y=ln(N) 
0.4 

03 

0.2 

0.1 

() () 

• 
I 

~ 

. 2 3 4 :, fl 7 8 9 JD I l 12 

lm.lcpcndcnt vm"iablc Y = In("! J 

Figure 2. Probability density function of Y = ln(N) 
rnmputed numerically by virtue of the integral (39). 
The two "funny gaps" in the curve nre due to the 
numeric limitation~ in the MathCad numeric ~olver 
that the author used for thi~ numeric computation. 

We are now just one more step from finding the 
probability den~ity of N. the number of 
Extra Terrestrial Civilizations in the Galaxy predicted 
by our Stati~tical Drake e4uation (]). The point here 
i~ to transfer from the probability dcn~ity function of 
Y to that of N, knowing that Y = ln(N), or 
alternatively, that N=exp(YJ, a~ ~tatcd hy (6). We 
must thus rc~ort to the tran~formation law of random 
variable~ (9) by ~etting 

y=g(x)=e'. (40) 

Thi~, upon inversion. yields the single root 

x, (y) C x(,) C In(,). (41) 

On the other hand. differentiating (40) one gets 

(42) 

where (41) wa~ already med in the la~t ~tep. The 
genernl trnn~formation law (9) finally yield~ 
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Thi~ probability density function fN(Y) wa~ 

computed numerically hy using (4]) and the numeric 
curve given hy (39), and the result i~ shown in figure 
3. 

PROBABILITY Dl:.:-,/SITY /-UNlTIO:-,i OF N 
Z .t-10-4 

~ 
'· ..... 

00 1()00 2000 3()0() 4000 

:-,/ = :-lumber of ET Ci"~izatiom in Gala~-

Figure 3. Tht: numeril' (and nut analytic) probability 
density function curve fN(y) of the number N of 

Extra Terrestrial Civili1:ations in the Galaxy accmding 
to the Statistical Drake cquati(]n (]). We sec that the 
curve peak (i.e. the mode) i~ very close to l(]W values 
(If N, hut the tail on the right is high, meaning that the 

n::sulting mean valut: (N) is of thc order of 

thou~ands. 

We now want to compute the mean value (N) 
of the probability density (43). Clearly, it is given by 

(N)~ f,·r,C,•),1,. (44) 

" 
This integral too was computed numerically, and the 
result was a perfect match with N=3500 of (22), that 

" 
(N) = 3499.99880 177509 +O.axxxx.112 4914686i (45) 

Note that thi~ re~ult wa~ computed numerically in the 
complex domain because of the Fourier transform~. 
and that the real part 1s virtually 3500 (as expected) 
while the imaginary part i~ virtually zero because of 
the rounding errors. So, this result is excellent, and 
proves that the theory presented so far 1s 
mathematically correct. 

Finally we want to consider the standard 
deviation. Thi~ aho had to he computed numerically, 
resulting in 

r,N = ]95].42910 143389 +0.0'.XfX:O:B 28CXXl'i8i . (46) 
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This standard deviation, higher than the mean value, 
implies that N might range in bctwn::n O and 7453. 

This completes our study of the probability 
den~ity function of N if the seven uniform Drake 
input random variable D, have the mean values and 
~tandard deviations li~ted Ill Table 1. 

We conclude that, unfortunately, eve11 under the 
.~implifying a.\·.rnmption.~ that the D, be unijOrmly 
di.\·tributed, it is impo.\·.\·ible to solve the full problem 
analytically, since all calculation.~ beyond equation 
(38) had to be perJOrmed numerically, 

This is no good, 

Shall Wl: thus luosc faith, and dt:clarc •'impmsihlc" 
the task of finding an analytic cxprc~sion for the 
probability density functiun f..v(Y) •J 

Rather surprisingly, the answer is "no", and there 
is indeed a way out of this dead-end, as we shall sec 
in the next sccti(]n. 

5. THE CENTRAL LIMIT THEOREM (CLT) 
OF STATISTICS 

Indeed there is a good, approximating analytical 
expression for f.,v (_v) , and this 1s the following 

l«gnormal probability demity .function 

f.v (y,_u,a) = _!_ ·-,,;---
1
-c 

Y ✓ 2,-va 
(y <". 0). (47) 

To understand why, we must resort to what is 
perhaps the most beautiful theorem of Statistics: 
the Central Limit Theorem (abbreviated CLT). 
Historically, the CLT was in fact proven first in 
190 I by the Russian mathematician Alexandr 
Lyapunov ( 1857-1918), and later ( 1920) by the 
Finnish mathematician far] Waldemar Lindeberg 
( 1876-1932) nnder weaker conditiom. These 
conditions are certainly fulfilled in the context of 
the Drake: equation hccausc of the "reality" of the: 
astronomy, biology and sociology involved with it, 
and we are not going to discuss thi~ point any 
further here. A good, synthetic description of the 
Central Limit Theorem (CL T) of Statistic~ is found 
at the Wikipedia site (ref. [7J) to which the reader 
is referred for more dctails, such as the cquatiom 
for the Lyapunov and the Lindeberg conditions. 
making the theorem ''rigorously" valid. 
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Put in loose terms, the CIX states that, if one 
has a sum of random variables even NOT 
identically di.\'lrihuted, thi.1' .mm tend.~ ta a normal 
di.\·trihution when the number of term.\' making up 
the sum tends to i1ifinity. AJ.rn, the normal 
di.\·trihution mean value i.1· the .mm rd· the mean 
value.1· af the addend random variable.\', and the 
normal di.1·tributian variana i.~ the .mm of the 
varianu.~ of the addend random variable.1·. 

Let us now write down the equations of the CLT 
in the form needed to apply it to our Statistical Drake 
equation (3). The idea i~ to apply the CLT to the sum 
of random variahles given hy (4) and (5) whatever 
their prahahility di.1·trihutiom can po.l'.l'ibly he. In 
(Jthcr word~. the CL T applied to the Statistical Drake 
equation (3 J leads immediately to the following three 
equations: 

1 J The sum of the (arhitrarily di~trihuted) 
independent random variables Y, makes up 
thc new random variable Y. 

2) The sum of their mean values makcs up thc 
new mean value uf Y. 

3) The sum uf thcir ,ariances makes up the 
new variance of Y. 

In equations: 

'_, , 
O'i = La{ 

'_, 

(48) 

This completes our synthetic description of the CL T 
for sums of random variables. 

6. THE LOGNORMAL DISTRIBTION IS 
THE DISTRIBUTION OF THE NUMBER 
N OF EXTRATERRESTRIAL 
CIVILIZATIONS IN THE GALAXY 

The CLT may of course be extended to products 
of random variables upon taking the logs of both 
sides, just as we did in equation (3). It then follows 
that the exponent random variable, like Y i11 (6), 
tends to a normal random variable, and, as a 
consequence, it follows that the base random 
variable, like Nin (6), tends to a log11ormal random 
variable. 
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To understand this fact better in mathematical 
terms consider again of the transformation law (9) uf 
random variables. The question is: what is the 
probability density function of the random variable N 
in equation (6). th.it is, what 1s the probability density 
function of the lognormal d1stribut1on? To find 1t. set 

(49) 

This, upun inversion. yiclds the .~ingle root 

On the other hand. differentiating (49) (me get~ 

where (50) was already used in the last step. The 
general transformation law (9) finally yields 

Therefore, replacing the probability density on the 
right by virtue of the well-known normal (or 
Gaussian) distribution given by equation (7), the 
lognormal distribution of equation (47) is found, and 
the derivation of the log-normal distribution from the 
normal distribution is proved. 

In view of future calculations, it is also useful to 
point out the so-called "Gaussian integral''. that is: 

,, 

1-, -,1-,'H,d H '' A 0 e e x= -·e , >, 
--, A 

B =real. (53) 

This follows immediately from the normali1:ation 
condition of the Gau~~ian (7). that is 

i.,-p)' 

la' dx =I. (54) 

just upon expandmg the square at the exponent and 
makmg the two replacements (we skip all steps) 

l 
I 

11=--,, >0, 
2a-

l' 
B = a" = real. 

(55) 
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In the sequel of this paper we ~hall denote the 
indcpcmknl iariabk uf lhc: lognormal distribution 
(47) by a lower ca~e letter n to remind the reader that 
corresponding random variable N 1s the po~itive 
integer number of ExtraTerrestrial Civilization~ in 
the Galaxy. In other words, 11 will be treated as a 
positive real number in all calculations to follow 
because it is a "large" number (i.e. a continuous 
variable) compared to the only civilization that we 
know of. i.e. our~elve~. In conclu~ion, from now on 
the Iognormal probability density function of 2\' will 
be written as 

fv(n)= _! ·-c;---
1
-, 

n ,(2.Jra 
(n ~ (]) (56) 

Having so said. we now turn to the statistical 
properties of the log:normal distribution (55). i.e. to 
the statistical properties that describe the number N 
of Extra Terrestrial Civilizations 111 the Galaxy. 

Our first goal 1s to prove an equation yielding all 
thc momenb of the l(]gnormal <li~trihution (56), that 
i~. for every non-negative integer k - 0, l, 2,. (me 
has 

(57) 

The relevant proof ~tart~ with the definition of the k
th moment 

(N')= r nk·I..v(n)dn 
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(1nr11]-p)' 

=I:n" 11.&a·e J,, 

One then transform~ the above integral by 
virtue of the sub\titution 

ln[n]=:. (58) 

The new integral in z is then seen to 
reduce to the Ciau\sian integral (53) 
(WC skip all \lCP\ here) and (57) 
follow\ 

Upon setting k = 0 into (56). 
normalization condition for f,v(n) follows 

f~l.v(n)d11 = 1. J,, 

the 

(59) 

Upon setting k = 1 into (56), the important 
mean value of the randam variable N is found 

(60) 

Upon setting k = 2 into (56). the mean value 
of the square of the random variable N is found 

(61) 

The variance af N now follows from the last two 
fornmlae: 

(62) 

The square root of this is the important .~ta11dard 
deviation formula for the N random variable 

(63) 

The third moment is obtained upon setting 
k = 3 into (56) 

(64) 

Finally, upon setting k = 4, the fou1th moment 
of N is found 

(65) 

Our next goal is to find the cumulants of N. In 
principle. we could compute all the cumulants K, 

from the generic i-th moment p; by virtue of the 

recursion formula (see ref. [8]) 

(66) 
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In practice, however, here we shall confine 
oun;elves to the computation of the fin;t four 
cumulants only because they only are required to 
find the ~kewnes~ and kurtosis of the distribution. 
Then, the fir\t four cumulants in terms of the first 
four momenh read: 

These equations yield, rc\pectively: 

(68) 

(69) 

,, . 
" K_1 =e.1·"e 2 (70) 

From these we derive the skewne!;s 

K, 

(72) 

and the kurtosis 

(73) 

Finally, we want to find the mode of the 
lognormal probability densi(y function. i.e. the 
abscis~a of its peak. To do ~o. we must first 
compute the derivative of the probability den~ity 
function f..v(n) of equation (56), and then ~et it 

equal to ?ero. This derivative is actually the 
derivative of the ratio of two func(iom of n, as it 
plainly appear~ from (57). Thu\, let u~ set for a 
moment 
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(74) 

where ·'E"" ~tand~ for ·'exponent," Upon 
differentiating this, one gets 

(75) 

But the lognormal probability density function (56), 
by virtue of (74), now reads 

f,(n)c ~ 
✓2nu 

(76) 

So that its derivative is 

dfET Dt'iani,, (r) 

d, 

-e E(n)E.(11)•11-l·c E(n) 

" ,,-

- e -E(" 1[1d11 )· 11 +I]_ 

" 
(77) 

Setting this derivative equal to zero means setting 

E(n)-11+1=0 (78) 

That is, upon replacing (75), 

(79) 

Rearranging, this becomes 

ln[n]-µ+u 2 =0 (80) 

and finally 

(81) 

Thi.~ i.~ the mo.~t likely number of ExtraTerre.~trial 
Civilization.~ in the Galaxy. 

How likely? To find the value of the probability 
density function fN(n) corresponding to this 

value of the mode. we mu~t obviou\ly replace (81) 
into (56). After a few rearrangements, one then 
gets 
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fN( 11 ,muc)= ~ 
✓27r u 

e -.u . e 2 (82) 

This is "hhw likely" the mhst likely number of 
ExtraTerrestrial Civilizatiom in the Galaxy is, i.e. 
it is the peak height ill the fognonnal probability 
density Junction fv (11). 

Next to the mode. the median m (ref. [9]) is one 
more statistical number u~ed to characterize any 
probability distribution. It 1s defined a~ the 
independent variable ah~cissa m ~uch that a 
rcalizati(]n of the random variable will take up a 
value lower than 111 with 50% probability or a value 
higher than m with 5W/r probability again. In other 
wonh. the median m splits up our prohahility 
den~ity in exactly two equally probable parts. Since 
the probability of occurrence of the random event 
cquab the area under its demity rurve (i.e. the 
definite integral under its density curve) then the 
median 111 (of the lognormal distribution. in this 
case) is defined as the integral upper limit m: 

lln(11f-1,l· 
2c,· 

2 
(83) 

In order to find m, we may 1101 differentiate (83) with 
respect to Ill , since the ··precise'" factor './i on the 
right would then di~appear into a zero. On the 
rontrary, we may try to perform the obvious 
suh~titution 

(in(,,)-µ)' 
2 ()2 

(84) 

into the integral (83) to reduce it to the fulluwing 
integral defining the error function crf(;:) 

Random variable 
Probability distribution 

Probability density function 

Mean value 

Variance 

Standard deviation 
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(85) 

Then, after a few rcduetiom that we skip for the sake 
of brevity, the full cquatiun (83) is turm;d intu 

that i~ 

,,rf[ln(m)-;,)~o 
✓2a 

(86) 

(87) 

Since from the defimtion (85) one obviously has 
erf(0J=0. (87) becomes 

whence finally 

ln(m)-p=O 
✓2a 

I rredian = 111 = e.u I. 

(88) 

(89) 

This is the median of the log11ormaf distribution of 
N. In other words, this is the 1111mber of 
ExtraTerrestrial civiliza1io11s i11 1he Galaxy such 
that, with 50% probability the acmal value of N will 
be lower tha11 this media 11, a11d with 50% probabili1y 
it will be higher. 

In conclusion, we feel useful to summarize all the 
equations that we derived about the random variable 
N in the following Table 2. 

N = number of communicating ET civilizations in Galaxy 
Lognormal 

/Jn/111--.uJ' 
-

fN(n)=I.. 
I lu' 

(II?'. 0) ---, 
n 5u 

" -
(N)~,,"c' 

, 
a,\, 'p a'(a' i) = e- e e -1 

a' 
a,.v =cl-'e 2 Jerr' -1 
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,, a-

All the moments, i.e. k-th mumrnt (Nk)=f'" e ' 
Mude (= abscissa 11f the lognmmal peak) " 

~a -,,,,, -c-
,mJe - pe;ik -

I 
a 

Value nf the Mode Peak ' 
, 

f-\, (nirrnlc) = ,Jz;; ' -, -
21T a 

Median(= fifty-fifty prohability value for N) n-edian = m = el-' 

----"--'-- ~ (,"' I 2) 
-/w -10"' 

Skewnes~ 
,, ,, 

; 
(, a _ I )'(,,a + 3e""' - )' (K, ), +6ecr- +6 

Kurtu~is 
K4 ➔ a' --~, 

(K, )' 
+ 2 e'"' + 3 e2"' -6 

Expression of pin terms of the lower (o,) and upper _L, ( \_L, h,[ln(h;)-1]-a;[h,(a,)-1] 
(h,) limib 11f the Drake uniform input random jl- Y,;-

,-1 ,-1 h, -a, 
variabks D, 

Exprc~sion of a' in terms of the lower (a,J and upper 
, , 

a,h, [h,(b, )- in(a, )]' 
rr' ~ Lrrf ~ LI-

(h,) limits of the Drake uniform input random (b, -a, )2 ,_, i-1 
variables D, 

Table 2. Summary of the propertie~ of the lognormal di~tnbution that applies to the random variable N = number of 
ET rnm1mmicating civilizatiom in the Galaxy. 

\Ve want t(] cnmplcte this sectinn ahout the 
lognormal prnhahility demity functi(]n (56) hy 
finding nut it~ 11umerie value.~ for the inputs tn the 
Stati~tical Drake e4uatinn (]) listed in Table I. 

According tn the CL T, the mean value µ to he 

in~crtcd into the lognurrnal den~ity (56) i~ given 
(according to the ~econd equation (48)) by the ~um of 

all the mean value~ (Y;). that is. by virtue of (31 ). by: 

Upun replacing the 14 a, and b
1 

li~ted in Tabk I 

into (90), the following numeric mean value p i~ 

found 

(91) 

Similarly, to get the numeric variance a' one 
must resort to the la~t of equations (48) and to (33): 

, 
cr2 = Lcrf (92) 

i=I 
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yielding the follmving numeric variance a 2 tn he 
in~erted into the lognormal pdf (56) 

la',,, 1.9387251 (93) 

whence the 11umeri£· standard deviation rr 

(94) 

Upon replacing the~e two numeric value~ (84) 
and (86) into the lognormal pdf (56), the latter 1s 
perfectly determined. It i~ plotted in Figure 4 
hereafter as the thin curve. 

In other words, Figure 4 shows the lognormal 
distributio,1 for the number 2\' of ExtraTerrestrial 
Civilizations in the Galaxy derived from the Central 
Limit Theorem as applied ta the Drake equatia1t 
(with tlte input data listed in Table 1). 

We now like to point out the most important 
~tati~tical prnpcrtics nf thi~ lognormal pdf: 

I) Mean Value of N. Thi~ i~ given hy cquati(]n (60) 
with /I and rr given hy (91) and (94). respectively: 
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(N)=e·,, e 2 '°'4589.559. (95) 

In other words, there are 459() ET Civilizations in 
the Galaxy according the Central Limit Theorem of 
Statistics with the inputs of Table I. This number 
459() is HIGHER than the 3500 foreseen by the 
classical Drake equation working with sheer 
1111mbers only, rather than with probability 
distributions. Thus equation (95) IS GOOJJ FOR 
NEWS FOR SETI, .fince it show.f that the expected 
1111mber of Hn is HIGHER with an adequate 
statfrtical treatment than ju.fl with the too .fimple 
Drake sheer numbers of (1 ). 

2) Variance of N. The variance of the lognormal 
distribution i~ given by (62) and turn~ out to be a 
huge number: 

3) Standard deviation af lV. The ~tam.lard deviation 
(If the lognormal distrihuti(]n i~ given hy (63) and 
turns out to be: 

(97) 

Again, this is GOOD NEWS FOR SETI. In fact, 
such a high standard deviation means that N may 
range from ve,y· low values (zero, theoretically, and 
one since H11ma11i1y exists) up to tens of 1l10usands 
(4590+11195=15785 is (95)+(97)). 

4) Mode of N. The mode (= peak abscissa) of the 
lognormal di~tribution uf N is given by (81 ). and has 
a surpri~ingly low numeric value: 

(98) 

Thi~ is well shown ltl Figure 4: the mode peak is very 
pronounced and clo~e to the origin. but the right tail 
is high. and thi~ means that the mean value of the 
distribution 1s much higher than the mode: 
4590>>250. 
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5) Median of N. The median(= fifty-fifty ab~cissa, 
~plitting the pdf in twu exactly cqui-probablc parts) 
of the lognonnal distribution of N 1s given by (89), 
and has the numenc value: 

In word~. a~~uming the input value~ listed in Table I, 
we have exactly a 500t prnbability that the actual 
value of N is lower than 1740, and 50% that it is 
higher than 1740. 

7. COMPARING THE CLT RESULTS 
WITH THE NON-CLT RESULTS 

The time is now ripe to compare the CL T
based results about the lognormal distribution of N. 
jui;! dei;cribed in Section 5, agaim! the Non-CLT
based re~ulti; obtained numerically in Section 3.3 

To do so in a simple, visual way, let us plot on 
the same diagram two curves: 

1) The numeric curves appearing in Hgure 2 
and obtained after laboriou~ Fourier 
tramform cakula!iom in !he complex 
domain, and 

2) The lognormal distribution (56) with 
numeric panda given by (91) and (94) 

respectively. 

Vv'c ~cc that the two curve~ arc virtually coincident 
for values of N larger than 1500. Thi.1· i.~ a 
consequence of the law of large numbers, of which 
the CLT is just one of the many facets. 

Similarly it happens fur natural lug of N. i.e. the 
random variable Y uf (5). that i~ plotted in Figure 5 
both in its normal curve \-crsiun (thin cunc) and in 
its numeric vcrsiun, obtained via Fourier tramfonns 
nnd already ~hown in Figure 2. 

The cm1clu.1·ion i.1' .1·imple: from now 011 we .~hall 
di.1Tard forn'er the numeric calc11latir111x and we'll 
.~tick only to the equation.\' derived by virtue of the 
CLT, i.e. tr, the log11ormal (56) and if.I' 
con.1·equence.1·. 
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Figure 4. Comparing lhc two probability density functions of lhc random variabk 11/ found: 
I) Al lhc end of Section 3.3. in a purely numcric way and without rcsorling to lhc CL Tat all (thick curve) and 
2) Analylically by using thc CLT and lhc rclcvant lognormal approximation (lhin curw). 

PRO BA BIUTY DENSITY rff\lCTIO"I or Y=ln("I) 
0 5 
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OJ I \ 
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.. 
I I 

A' ~ 
2 4 7 8 9 Ill )) )2 

lnckpcnt.lcnt vanalllc Y = ln(N) 

Figure 5. Comparing lhc two probability density functions of lhc random variabk Y=ln(N) found: 
I) Al lhc end of Section 3.3. in a purely numcric way and wilhoul resorting lo thc CL T al all (lhick curvc) and 
2) Analylically by using thc CLT and lhc rclcvant normal (Gaussian) appro.xirnalion (thin Gaussian curve). 

8. DISTANCE OF THE NEAREST 
EXTRATERRESTRIAL CIVILIZATION 
AS A PROBABILITY DISTRIBUTION 

A\ an application of the Statistical Drake 
Equation developed in the previous ~ec!iom of thi\ 
paper. we now want to consider the problem of 
estimating the diqance of the ExtraTerrestrial 
Civilization nearest to us in the Galaxy. In all 
Astrnbiology tcxtbooh (sec, for in\tancc, ref. [IOJ) 
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and in several web sites, the solution to this 
problem is reported with only slight difference~ in 
the mathematical proofs among the variom authors. 
In the first of the coming two sections (\cction 7.1) 
we derive the expression for this ''ET _Distance" 
(as we like to denote it) in the cla~sical, non
probabilistic way: in other words. this is the 
cla~sicaL determiniqic derivation. In the second 
section (7 .2) we provide the probabilistic 
derivation. arising from our Stati\tical Drake 
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Equation, of the corresponding probability density 
function .f~. 1 Disim,"'(r) here r is the distance 

hetwccn u~ and the nearest ET civilintion 
assumed as the independent variahle of its own 
probability demity function. The emuing sediom 
provide more mathematical details about this 
fr:T_Di,1.rn"'(r) such as its mean value, variance, 

standard deviation, all central moments, mode, 
median, cumulant\, skewness and kurtosis. 

CLASSICAL, NON-PROBABILISTIC 
DERIVATION OF THE DISTANCE OF THE 
NEAREST ET CIVILIZATION 

Cnmidcr the Galactic Disk and a~sumc that: 
1) The diameter of the Galaxy is (about) 100,000 

light years. (abbreviated ly) i.e. its radius, 
Rr.-ai<i.". is about 50,000 ly. 

2) The thickne~s of the Galactic Disk at half-way 
from its center, lieu/an , is ahout 16,000 ly. 

Then 
3) The volume of the 

approximated as the 
corre~ponding cylinder, i.e. 

Galaxy 
volume 

may 
of 

be 
the 

(1001 

4) Now consider the sphere around us having a 
radim r. The volume of such a~ ~phere is 

4 (Er Diqancel' 
Vo,,,_s1,11,•1,· = 31r 2 (Ill l) 

In the laq equation, \Ve had to divide the di~tance 
"ET Di~tancc'' between ourselves am! the nearest 
ET Civilization by 2 because we are now going to 
make the unwarranted assumption that all ET 
Civilization.~ are equally space from each other in 
the Galaxy! This is a crazy assumption, clearly, 
and should he replaced by more ~cientifically
grounded assumptions as soon as we kmnv more 
about our Galactic Neighbourhood. At the moment, 
however, this is the best guess that we can make, 
and so we shall take it for granted, although we are 
a\vare that this is weak point in the reasoning. 

Having thns assumed that ET Civilizations 
are UNIFORMLY SPACED IN THE GAUXY, 
we can write down this proportion: 
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( I 02) 
N 

That i\, upon replacing hoth (100) and (IOI) into 
(102J: 

( I 03) 

The only 1111know11 m the last equation is 
ET_Distance, and JO 11'e ma_v solve fbr it, thus 
:,?elfin:,? 1he: 

(AVERAGE) DISTANCE BETWEEN ANY PAIR 
OF NEIGHBOURING CIVILIZATIONS IN 
THEGAUXY 

C 

\IN 
(104) 

where the positive constant C is defined by 

C = ~ 6 RL,1"''" hGalrl\\ ""28845 light years. ( 105) 

Equations (104) and (105) are the starting point for 
our first application of the Statistical Drake 
equation, that we discuss in detail in the coming 
sections of this paper. 

PROBABILISTIC DERIVATION OF THE 
PROBABILITY DENSITY FUNCTION FOR 
ET_DISTANCE 

The probability density function (pdf) yielding 
the distance of the ET Civilization nearest to us in 
the Galaxy and presented in this section, was 
discovered by this author on Septemher 5th , 2007. 
He did no! disclose it lo other scientists until the 
SETI meeting run by the famous mathematical 
physicist and popular science author, Paul Davies, 
at the "Beyond" Center of the University of 
Arizona at Phoenix, on 1-iebruary 5-6-7-8, 2(1(18. 
Thi~ meeting was also attended hy SETI Institute 
experts Jill Tarter, Seth Shostak, Doug Vakoch, 
Tom Pierson and others. During this author's talk, 
Paul Davies suggested to call "the Macrnne 
distribution'' the new probability density function 
that yields the ET_Distance and i~ derived in thi~ 
section. 
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Let us go back to equation (104). Since N is 
now a random variable (obeying the lognormal 
distribution), it follows that the ET _Distance mmt 
be a random variable as well. Hence it must have 
some unknown probability demity function that 
we denote by 

(106) 

where r i~ the new independent variable of such a 
probability di~tribution (it is denoted by r to 
remind the reader that it expresses the three
dimensional radial distance separating us from the 
nearest ET civilization in a foll spherical symmetry 
of the space around us). 

The question then is: what is the unknown 
probability distribution (106) of the ET _Distance? 
We can answer this question upon making the two 
formal substitutions 

{ 

N ➔ x 

El"_diqancc ---'I- _,, 
(107) 

into the transformation law (8) for random 
variables. As a consequence, (104) takes form 

C 
r=~(x)=-=C·x -'. . . v;; ( 11)8) 

In order to rind the unknown probability density 
fcT_D1.,t,uHc(r), we now to apply the rule (9) to 

(108). First. notice that (108), when inverted to 
yield the various roots x, (y), yields a single real 

root only 

( 11)9) 

Then, the summation in (9) reduces to one term 
only. 
Second. differentiating (108) one finds 

, C -
~ (x)=-___::___·X 1 

3 

Thus, the relevant absolute value reads 
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(110) 

X 
C -

·X _1. 

Upon replacing ( 111) into (9), we then find 

(111 J 

... (112) 

Thi~ is the denominator of (9). The numerator 
simply i~ the lognormal probability density 
function (56) where the old independent variable x 
must now be re-written in terms of the new 
independent variable _l' by virtue of ( 109). By 
doing so, we finally an-ive at the new probability 
density function Ir Cr) 

Rearranging and replacing y by r. the J'inal form 
JS: 

I. ( ) 3 I 
. ETJC,,"""' r =-• ~ e 

- r ,J2HCY 
( II 3) 

Now, just replace C in (113) by virtue of (105). 
Then: 

We have discovered the probability density 
function yielding the probability of finding the 
nearest ExtraTerrestrial Civilization in the 
Galaxy in the spherical .~hell betwee11 the 
di.~tances rand r+dr.from Earth: 

( I 14) 

holding for r ::C: 0. 

STATISTICAL PROPERTIES OF THIS 
DISTRIBUTION 
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We now want to study this probability 
distribution in detail. Our next questions are: 

I) What is its mean value? 
2) What arc it\ vanancc and standard 

deviation? 
3) What are its moment~ to any higher order? 
4) What are its cumulants? 
5) What are its skewnes~ and kurtosis? 
6) What are the coordinate~ of it~ peak, 1.e. 

the mode (peak ahsci\sa) and its ordinate'? 
7) What is its median? 

The first three points in the list are all covered 
by the following theorem: all the moments of ( 113) 
are given by (here k is the generic and non
negative integer exponent, i.e. k = 0, I, 2,3, ... ~ 0) 

l, ' 3 = r e 
o r &a 

-k ,u ! ' CT 

=C"e ·'e IS ( 115) 

To prove this result, one first transforms the above 
integral by virtue of the substitution 

( 116) 

Then the new integral in z i~ then seen to reduce to 
the known Gau~sian integral (53) and, after \everal 
reductions that we skip for the ~ake of brevity. 
( 115) follows from (53). In other words. we have 
proven that 

(ET_Distancc 1
) = C1 e ( 117) 

Upon \e!!ing k = {I into ( 117), the 
normalization condition for fET_Di,i,m"'(r) follow~ 

( 118) 
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Upon setting k = I into (117). the important 
mean value of the random variable ET _Distance 
is.fOund 

(bT_Distance) = Cc .i c rn ( 119) 

Upon setting k = 2 into ( 117). the mean value of 
the square of the random variable ET _Distance is 
found 

( 120) 

The variance of ET _Distance now follow~ from 
the las! two formulae with a few reductiom: 

a~T_D,mn"' = ( Ef_Distance 2 )-(Ef_Distance)
2 

( 121 l 

So, the variance of ET _Distance is 

( 122) 

The ~4uare root of this is the important 
standard deviation of the ET_Distance random 
variable 

_S c'fe' 
_ , .1 , 18 , 9 _ 

O"ET_D1'!an<"-C{ l l 1. ( 123) 

The third moment is obtained upon setting 
k =3 into (117) 

" 
(Er_Distance 1 ) = C 1 e-p e 2. ( 124) 

Finally, upon ~ctting k = 4 into ( I 17). the fourth 
moment of ET Di\tancc i~ found 

' ' 
Ef_Distance = C e :i e 9 

( 
') 0 - p C ( 125) 
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Our next goal is to find the cumulants of the 
ET _Distance. In principle, \Ve could compute all 
the cumulants K, from the generic i-th moment 

J.1, by virtue of the recursion fommla (see ref. [8]) 

(126) 

In practice, however, here we ~hall confine 
ourselves to the computation of the first four 
cumulants because they only arc required to find 
the skewness and ku11mis of the distribution (113). 
Then, the first four cumulants in terms of the first 
four moments read: 

These equations yield, respectively: 

_!'_ ~ 

K1 =Ce-' e 1~. (128) 

(129) 

[ 

c' .'i ,-,' 

+,, ~, l K,=C·1 e-·"e 2 - 3 e IH ( 130) 
' 

K_., = (131 l 

>;, [ <c' :,('l"' _.('l", a' 
"a' l 

=C4 e ' ' ' -4, " - 3e " + 12 e .1 -6e 9 

From thc~c we derive the ~kcwncss 
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r 
a- :,('l"' 

+,,: l ,, 11 e -:, - J e IS 

\ 

... (132) 
and the ku1tosis 

K _.(l", "- z(l"' 

--'-=e 9 +2e-1 +3e 9 -6. (133) 
(K, )' 

Next we want to find the mode of this 
distribution, i.e. the abscissa of its peak. To do so, 
we must first compute the derivative of the 
probability density function f~.i_n,_,,,""'(r) of ( 113), 

and then set it equal lo zero. This derivative i\ 
actually the derivative of the ratio of two functiom 
of r, as its plainly appears from (113). Thus, let us 
set for a moment 

where "E" 
differentiating, 
one gets 

stands fm 

(134) 

"exponent," Upon 

£(,Jc,:, ,[,{~:]-p]c' c' (-3),' 

,' 

(135) 

But the probability density function (113) now 
reads 

3 e -f.(, l 
/1 I D1,lall<C(r)= ~ 

...J2na- r 
(136) 

So that its derivative is 

<'.(/ETDi,ian"''(r) 3 -e E(l')E'(r)•r-l·e £(/') 

dr Ea. ,.2 
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3 -c-i,(,)[E'(r)·r+iJ. 

ilia· r2 
( 137) 

Swing thi~ derivative cqual to zern means setting 

£(,) ,+lcO (138) 

That is, upon replacing ( 135) into ( 138), we get 

Rearranging, this becomes 

that is 

whence 

and finally 

'I [c'] ' --~ n -, +3µ+a· =0 ,· 

I [
cl-" a' n - --+-
r 3 9 

// ,,

,;,wlc '= rp,·ak = CC :; C 9 

( 139) 

(140) 

( 141) 

(142) 

(143) 

This is the most likely ET_Distancc/Yom Earth. 

How likely? 
To find the value of the probability density 
function h.i_Disim,., ( r) corresponding to this value 

of the mode, we mus! obviously replace () into (). 
After a few rearrangements, which we skip for the 
sake of brevity. one gets 

Peak Value of / 1. 1:_1ii,1.u,1e(r) = f1,1_1Ji,1a""'(r111,d~) 

3 ,ii (T 

- . (' _< . (' 18 . 

c5a 

so 

. .. (144) 

This is the peak height in the pdf _f bT IJ,"an"' (r). 

Ncxt to the rnodc, the rncdian m (rcf. [91) is onc 
more stati~tical numhcr used to charactcri1:c any 
prnhahility di~trihutinn. It 1s defined as the 
independent variable abscissa 111 such that a 
rcalinttinn nf thc random variablc will takc up a 
valuc lower than m with 50°/c probability or a value 
highcr than 111 with 50'7c prnbability again. In nthcr 
words. the median 111 sphts up our probability 
dcnsity in exactly two cqually prnbablc parts. Since 
the prnbability uf nccurrcm.:c nf thc randum cvcnt 
cquab the area undcr its dcnsity curve (i.c. thc 
definite integral under its density curve) then the 
median m (of thc lngnnrmal distribution. in thi~ 
case) is defined as the rntegral upper limit m: 

(]45) 

Upnn replacing (113), this becomes 

2 
( 146) 

In nrdcr to find111, wc may 110! diffcrcntiate (146) 
with respect to m, since the ··precise" factor './2 on the 
right would thcn disappcar intu a Lcrn. On the 
cnntrary, we may try tu perform thc obvinus 
substitutinn 

(147) 

into the intcgral ( 146) to rcducc it to thc following 
intcgral (85) dcfining the error functinn erf(;). Then. 
aftcr a few rcductinns that we leavc In the rcadcr as 
an cxcrci~c, the full equation ( 145). dcfining the 
median, is turned into thc corresponding cquatinn 
involving the error function er/(xl as defined hy (85): 
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ET _Distance between any two ncighbnring ET 
Randnm variable Civilizati(]ns in Galaxy assuming they arc lJNirORMLY 

di~tributed thrnughnut the wlmlc Galaxy vnlumc. 
Prnhahilit,, distributinn Unnamed (Paul Davies Sil" rested ·'Maccune di.~trihutinn") 

1:lnl fiRi,,.,.',\h,,, ,_, 1-,r 

Prnhability density function ' 
I
' ) 3 I --:>a-

. ET_Di,t.rn«:(r = - •--- ,, 

' 5a 

(Defining the positive numeric comtant C) C = v6 Rt"'"'' he"'"'' :::e 28845 light years 

" 
o· 

-
Mean value (Er _Di.~lanee) =Ce 3 e 18 

' Variance a~T 
.2 - '/I 9 9 , ,-[,' l 

DLStan<e = C e ' e e - 1 

Standard deviation -" o·r::-
- .i,rn Y_ 

aETDisian~·-Ce < e 1 

(Er_Distance') = ck e 

,,, k' a· 

All the moments, i.e. k-lh mumcnl ' ' 
,s 

' " ,-
- -

Mode(= abscissa of the probability density function 1;,rnk = r,,,•aA = Ce ' ' 
,, 

peak) 
Peak Value nf fET_D,,tan<e ( r) = 

" " Value of the Mode Peak 3 
'= /1 I D1,!ai,u;(lm,J~) = & . e' . e 18 

- C 2;r er 

Median (c fifty-fifty probability value for " 
median = m = Ce ' ET Distance) 

<;a· - ' 
[ 

o· 

' 2 '~ j e -1-i e ' -3e " 
Skewness K, 

--- C 

' ' (K, ), 
c'[, 

~ ..,., .">a' -1 (T' a 

-6/: r ,, 
-4c 

,, 
- 3c 

,, 
+ 12 c ' 

4a' " 
2 (T-

K, - - -
Kurtosis --=c " + 2 C 3 +3c ' -6 

(K,)' 
Expression of JI in terms of the lower (11,) and upper _L' ( \ _L' h,[ta(h;)-1]-a;[h,(a,)-1] 

(b,) limits of the Drake uniform input random JI- Y,;-
1-l 1-l h; -a, 

variables D, 

Expression of a 2 in tcrms of the lowcr (a,J and upper ' ' a ,h, [la ( h, )- la (a, )]' , L , CL'-(h,) limits of the Drake uniform input random 
a-= ar, 

(b, - a,)' 
variables D, 

,_, i-1 

Table 3. Summary of the properties of the prohahility diqrihution that applies to the random variable ET _Distance 
yielding the (average) distance between any two neighboring communicating civilizations in the Galaxy. 
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[
C' l In • _, - p ,,, 
flu 

I 

2 
(148) 

(149) 

This is the median of the log11ormal dfrtributio11 of 
N. /11 other word.f, this is the number of 
HxtraTerrestrial civilizations in the Galaxy such 
that, with 50% probability the actual value of N will 
be lower than this median, and with 50% probability 
it will be higher. 
In conclusion, we feel useful to summarize all the 
equations that we derived about the random variable 
Nin the following Table 2. 

NUMERICAL EXAMPLE OF THE 
ET_DISTANCE DISTRIBUTION 

Since from the definition (147) one obviously has 
erf(0J=0. (149) yields 

In this section \Ve provide a numerical 
example of the analytic calculations carried on so 
far. 

whence finally 

( 150) 
Consider the Drake Equation values reported 

in Table I. Then, the graph of the corresponding 
probability density function of the nearest 
ET _Distance. f ET D,wmi,,( r), is shown in Figure 6. 

median=m=Ce (151) 

-45-1(('0 

(l 0 

DISTA:-JCE OF NEAREST ET _CIVJLIZA TION 

,, 
' " I " ' I " I'-

I/ ...... ........ 
- ' 500 l(XJ0 J:,00 2000 2500 3000 .,500 4000 4500 5000 
ET _Di,lan~e fru,n Earlh (lighl yearsi 

Figure 6. This is the probability of finding the nearest Extra Terrestrial Civilization at the diqance r from 
Earth (in light years) if the values as~umcd in the Drake Equation arc tho~c shown in Table I. The relevant 
probability dcn~ity function (ET 0 ,,1,,,1.,,(r) i~ given by equation (113). It~ mode (peak absci~sa) equals 1933 

light years. but its mean value is higher since the curve has a high tail on the right: the mean value equals in 
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fact 2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FOR 
SETI, ina.mmch as the nearest ET Civilization might lie atjmt 1 sigma= 2670-1309 = 1361 light years 
from us. 

From Figure 6, we see that the probability of 
finding Ex!raTeITestrials i\ pra<.:tically Lero up lo a 
distance of about 500 light years from Earth. Then 
it qans increa~ing with the increasing distance 
from Earth, and reaches its maximum at 

_!'_ ,r 

r,,rn,c=r
1
,mJ.=Ce •1 e <) :=c]9JJ]igh1ycar.;. (152) 

This is the MOST LIKELY VALUE of the 
distance ut which we can expect to find the 
nearest ExtraTerrestrial civilizatio11. 

It is not, however. the mean value of the 
probability distribution (113) for .f1.,:_,Ji,,.u,1e(r), In 

fact, the probability density ( 113) has an infinite 
tail on !he right, as clearly shown in Figure 6, and 
hence ii\ mean value mus! be higher than its peak 
value, As given by (119). its mean value is 

p " 

r,,,,,""-''"''".=Ce ie 1x ~2670 light years. (153) 

This is the MEAN (value of the) DISTANCE 
at which we can expect to find ExtraTerrestrials. 

After having found the above two distances ( 1933 
and 2671) light years, re~pectively), the next natural 
4uestion that ari~es is: '·what is the range, forth am! 
back around the mean value or the di~tance. within 
which we can expect to find ExtraTerreqrials with 
"the highest hopes?," The answer to this question 
is given by the notion of standard deviation. that 
we already found to he given by (123) 

... ( 154) 

More precisely, this i\ the \O called I-sigma 
(distance) level. Probability theory then shows that 
the nearest ExtraTerrestrial civilization is expected 
to he located within this range, i.e. within the two 
distances of (2671)-1Jl)9) = 1361 light years and 
(2670+1309) = 3979 light year\, with probability 
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given hy the integral of fET_Dostan<e(r) taken in 

between these two lower and upper limits, that is: 

r.'97911 e Ill a""" 
J, - • .hTD1,rnn,o(r)dr:=c0.75=75% (155) 

13/Jlilglllyea" 

In plain words: with 75% probability. the nearest 
ExtraTerrestrial civilization is located in between 
the distances of 1361 and 3979 light years from us, 
having assumed the input values to the Drake 
Equation given by Table I. If we change those 
input values, then all the numbers change again. 

9. THE "DATA E~RICH.\1E~T 
PRI~CIPLE" AS THE BEST CLT 
CONSEQUENCE UPON THE 
STATISTICAL DRAKE EQUATION 
(ANY NUMBER OF FACTORS 
ALLOWED) 

As a fitting climax to all the statistical 
equations developed so far, let us nmv state our 
"DATA ElVRICHMENT PRINCIPLE," It simply stutes thut 
"The llif.:her the IVumber of Factors i11 the 

Statistical Drake equation, The Better," 

Put in this simple way, it simply looks like a 
new way of saying that the CLT lets the random 
variable Y approach the normal distribution \Vhen 
the number of terms in the ~um (4) approaches 
infinity. Ami this i\ !he ca\e, indeed. However, our 
"Data Enrichment Principle" has more profound 
methodological consequences that we cannot 
explain now, but hope to describe more precisely 
m one or more commg papers. 

CONCLUSIONS 

We have sought to extend the classical Drake 
equation to let it encompass Statistics and 
Probability. 

This approach appears tn pave the way to 
future, more profound investigations intended not 
only to associate ·'error bars" to each factor in the 
Drake equation, but especially to increase the 
number of factors themselves. In fact, this seems to 
be the only way to incorporate into the Drake 
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equation more and more new scientific information 
as soon as it becomes available. In the long run, 
the Stati~tical Drake equation might just become a 
huge computer code, growing up in size and 
especially in the depth of the ~cientific information 
it contained. It would thu~ be Humanity's first 
"Encyclopaedia Galactica," 

Unfortunately, to extend the Drake equation to 
Statistics, it \Vas necessary to use a mathematical 
apparatu~ that is more sophisticated than just the 
simple product of seven numhers. 

When this author had !he honour and privilege 
to present his results at the SETI Institute on April 
I 1117, 2008, in front of an audience also including 
Professor Frank Drake, he felt he had to add these 
words: "My apologies, Frank, for disrupting the 
beautiful simplicity of your equation," 
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