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Quantum Tomography of Negative Energy States in the 
Vacuum 

Introduction 

Future aerospace vehicles could have an advanced propulsion system that uses 
negative quantum vacuum energy to modify the spacetime geometry in the immediate 
vicinity surrounding the vehicle in order to induce faster-than-light motion via 
traversable wormholes or warp drives, or even levitation via antigravity [1, 2]. These 
exotic propulsion concepts are well-known in mainstream general relativity and 
quantum field theory research. The notion of a physical state with negative energy is 
not familiar in the realm of classical physics. However, it is not rare in quantum field 
theory to have quantum states with negative energy density or a negative energy flux. 
Even for a quantum scalar field in the flat Minkowski spacetime, it can be proved that 
the existence of quantum states with negative energy density is inevitable [3]. 

Although all known forms of classical matter have non-negative energy density, it is not 
so in quantum field theory. A general quantum state can be a superposition of particle 
number eigenstates and may have a negative expectation value of energy density in 
certain spacetime regions due to quantum coherence effects [3]. These considerations 
remain true even for quantum fields in a curved spacetime where the effects of 
gravitational fields, or equivalently, accelerations, can be observed due to the mass of 
astronomical bodies or the motions of astronomical bodies. 

There are two key examples of specially prepared quantum vacuum states that are 
known to produce small amounts of negative energy density in the laboratory. These 
are the well-known Casimir effect and the squeezed vacuum states of the 
electromagnetic field. The former is a static quantum vacuum effect while the latter is 
a time-domain quantum vacuum effect. There are several other examples of special 
quantum vacuum or particle states that produce negative energy density, but they are 
beyond the scope of this report because they remain mathematical curiosities or are not 
practicable to implement in the laboratory in the foreseeable future. 

We already make small amounts of negative energy in the laboratory via the Casimir 
effect and squeezed electromagnetic vacuum states, but we do not yet know if we can 
access larger amounts for extended periods of time over extended spatial distributions 
for the purpose of modifying spacetime for aerospace propulsion applications. It will be 
necessary to first explore the quantum nature of the Casimir effect and squeezed 
electromagnetic vacuum states to determine whether we can measure and spatially 
map their negative energy density. This is a necessary first step to take before 
beginning any study on producing large quantities of negative energy because we will 
first need to know how to measure and spatially map negative energy in order to 
properly control it after producing it. This is the motivation for this report. 

We need to firm up our understanding of how lab detectors will respond to negative 
energy in situ. A first step in this direction was already taken by Hansen et al. [4] in 
2001 for the time-domain negative energy pulses in squeezed electromagnetic vacuum 
states, and more recently Marecki [5, 6] generalized the analysis of the output of 
balanced homodyne detectors (BHDs) for the case of static negative energy states 
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inside Casimir cavities. The most important feature of these devices is their ability to 
quantify the quantum vacuum fluctuations of the electric field because the output of 
BHDs provides information on the one- and two-point functions of arbitrary states of 
quantum fields. Marecki computed the two-point function and the associated spectral 
density for the ground state of the quantum electric field in Casimir geometries, and 
predicts a position- and frequency-dependent pattern of BHD responses if a device of 
this type is placed inside a Casimir cavity. The proposed device allows for the direct 
detection of quantum vacuum fluctuations and provides a spatial mapping of the 
negative energy contained inside the cavity, which will be summarized in this report. 
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REVIEW OF NEGATIVE (or SUB-VACUUM) ENERGY 

Overview 

The implementation of faster-than-light (FTL) interstellar travel via traversable 
wormholes or warp drives or other antigravity forces for propulsion, generally requires 
the engineering of spacetime into very specialized local geometries surrounding the 
immediate vicinity of the aerospace vehicle undergoing this type of motion. The 
analysis of these via the general relativistic field equation plus the resultant source 
matter equations of state demonstrates that such geometries require the use of 
"exotic" matter in order to produce the requisite FTL or antigravity spacetime 
modification. Exotic matter is generally defined by general relativity physics to be 
matter that possesses (renormalized) negative energy density (sometimes negative 
stress-tension = outward pressure, a.k.a. gravitational repulsion or antigravity), and 
this is a very misunderstood and misapplied term by the non-general relativity 
community. We clear up this misconception by defining what negative energy is, where 
it can be found in nature, and we also review the two primary experimental concepts 
that are known to produce negative energy in the laboratory. Also, it has been claimed 
that FTL and antigravity spacetimes are not plausible because exotic matter violates the 
general relativistic energy conditions. However, it has been shown that this is a 
spurious issue. The identification, magnitude, and production of exotic matter is seen 
to be a key technical challenge, however. FTL and antigravity spacetimes also possess 
features that challenge the notions of causality and there are alleged constraints placed 
upon them by quantum effects. Reference [1] reviews and summarizes these issues 
with an assessment on the present state of their resolution. 

What exactly is "exotic" matter? In classical physics the energy density of all observed 
forms of matter (fields) is non-negative. What is exotic about the type of matter that 
must be used to produce traversable wormhole, warp drive, or antigravity spacetimes is 
that it must have negative energy density and/or negative flux [7]. The energy density 
is "negative" in the sense that the configuration of matter fields we must deploy to 
produce a traversable wormhole, warp drive, or antigravity effect must have an energy 

density, pE (= pc2, where p is the rest-mass density), that is less than or equal to its 

pressures/tensions, A [8, 9].* In many cases, these equations of state are also known 
to possess an energy density that is algebraically negative, i.e., the energy density and 
flux are less than zero. It is on the basis of these conditions that we call this material 
property "exotic." The condition for ordinary, classical (non-exotic) forms of matter 

that we are all familiar with in nature is that pE >p, and/or pE 0. These conditions 
represent two examples of what are variously called the "standard" energy conditions 
which are computed from the trace of the matter stress-energy tensor': Weak Energy 

Condition (WEC: 	0, pE 	0), Null Energy Condition (NEC: pE +p, 0), 
Dominant Energy Condition (DEC), and Strong Energy Condition (SEC). These energy 
conditions forbid negative energy density between material objects to occur in nature, 
but they are mere hypotheses. Hawking and Ellis [10] formulated the energy conditions 
in order to establish a series of mathematical hypotheses governing the behavior of 

' From this point forward, all Latin letters (e.g., i, j, k = 1_3) that appear as indices on physical quantities denote 
the usual 3-dimensional space coordinates, x1  - v3, indicating the spatial components of vector or tensor quantities. 
' The stress-energy-momentum tensor is a matrix quantity that encodes the density and flux of energy and 
momentum for any type of matter under study. 
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collapsed-matter singularities in their study of cosmology and black hole physics. More 
specifically, classical general relativity allows one to prove lots of general theorems 
about the behavior of matter in gravitational fields. 

However, real physical matter is not "reasonable" because the energy conditions are in 

general violated by semiclassical quantum effects (occurring at order TO [9]; More 
specifically, quantum effects generically violate the average NEC (ANEC). Furthermore, 
it was discovered in 1965 that quantum field theory has the remarkable property of 
allowing states of matter containing local regions of negative energy density or negative 
fluxes [3]. This violates the WEC, which postulates that the local energy density is non-
negative for all observers. And there are also general theorems of differential geometry 
that guarantee that there must be a violation of one, some, or all of the energy 
conditions (meaning exotic matter is present) for all FTL and antigravity spacetimes. 
However, all of the energy condition hypotheses have been experimentally tested in the 
laboratory and experimentally shown to be false - 25 years before their formulation 
[11]. 

In quantum field theory, negative energy is a manifestation of what is now called the 
"sub-vacuum" levels of the quantum zero-point (or vacuum ground state) fluctuations 
that correspond to any particular quantum field of matter under study. Hence, the 
energy corresponding to sub-vacuum quantum fluctuations is now called "sub-vacuum 
energy": sub-vacuum energy negative energy. Further investigation into this technical 
issue showed that violations of the energy conditions are widespread for all forms of 
both "reasonable" classical and quantum matter [12-16]. Furthermore, Visser [9] 
showed that all (generic) spacetime geometries violate all the energy conditions. So 

the condition that pr >p, and/or pr 0 must be obeyed by all forms of matter in nature 
is spurious. Negative energy has been produced in the laboratory and this will be 
discussed in the following sections. 

Examples of Negative (Sub-Vacuum) Energy Found in Nature 

The exotic (energy condition-violating) fields that are known to occur in nature are: 

1. Static, radially-dependent electric or magnetic fields. These are borderline exotic, 

if their tension were infinitesimally larger, for a given energy density [10, 17]. 
2. Squeezed quantum vacuum states: electromagnetic and other (non-Maxwellian) 

quantum fields [8, 18]. 
3. Gravitationally squeezed electromagnetic vacuum fluctuations [19]. 

4. Casimir effect, i.e., the Casimir vacuum in flat, curved, and topological spaces 
[20-28]. 

5. Other quantum fields/states/effects. In general, the local energy density in 

quantum field theory can be negative due to quantum coherence effects [3]. 
Other examples that have been studied are Dirac field states: the superposition 

of two single particle electron states and the superposition of two multi-electron- 

positron states [29, 30]. In the former (latter), the energy densities can be 
negative when two single (multi-) particle states have the same number of 

Planck's reduced constant, = 1.055 x  10-34  is. 
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electrons (electrons and positrons) or when one state has one more electron 

(electron-positron pair) than the other. 

Cosmological inflation [9], cosmological particle production [9], classical scalar fields 
[9], the conformal anomaly [9], and gravitational vacuum polarization [12-15] are 
among many other examples that also violate the energy conditions. Since the laws of 
quantum field theory place no strong restrictions on negative energies and fluxes, then 
it might be possible to produce exotic phenomena such as faster-than-light travel [31-
33], traversable wormholes [8, 9, 34], violations of the second law of thermodynamics 
[35, 36], and time machines [9, 34, 37]. There are several other exotic phenomena 
made possible by the effects of negative energy, but they lie outside the scope of this 
report. In what follows, we consider only items 2 and 4 in the previous list for the 
purpose of this report due to their ready applicability and technical maturity. We will 
not examine the other items in the list because they are theoretical curiosities that 
remain under study by investigators. 

Bask Notions of the Quantum Field Theory of Light 

Before going further, it will be helpful to briefly outline the basic notions and 
terminology of the quantum field theory of light (i.e., quantum optics) because the 
content of this report focuses on those aspects. 

Classically, light is electromagnetic radiation that can be pictured as waves flowing 
through space at the speed of light, c (= 3.0 x 108  m/s). The waves are not waves of 
anything substantive, but are in fact ripples in the state of a field. These waves carry 
energy, and each wave has a specific direction, frequency and polarization state. This 
is called a "propagating mode of the electromagnetic field." A simple model for this is 
the electromagnetic oscillator. One complex-valued vector function u(v,t) called a 
spatial-temporal mode comprises all classical wave aspects including polarization. The 
simplest example of a spatial-temporal mode is a plane wave 

u(x.t)= uoexu[i(kx tut)] of polarization vector uo, angular frequency to, and wave 

vector k (definition: k2  = 2(.0 /6.2. ) where i is the unit complex number, and x is the 

space coordinate and t is the time coordinate. 

This mode defines a framework in space and time that may be excited by the quantum 
field "light." The mode function quantifies the strength of one excitation in space and 
time. Also, the mode function obeys the laws of classical waves given by Maxwell's 
equations of electrodynamics. The choice of u(x,t) is made by the observer. The 
observer singles out one mode, one quantum object from the rest of the world to make 
a specific observation or measurement. This object turns out to be a harmonic 
oscillator described by the annihilation operator a. A useful tool for modeling the 
propagating mode of the electromagnetic field in quantum mechanics is the ideal 
quantum mechanical harmonic oscillator: a hypothetical charged mass on a perfect 
spring oscillating back and forth under the action of the spring's restoring force. The 
operator a stands for the quantized amplitude with which u(v,t) can be excited. In 

classical optics it would be just a complex number a of magnitude lal and phase 

arg(a). The quantized amplitude a is neither predetermined nor given by the observer 
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but depends on the state of u(x,t). This state exists even if literally nothing is in the 
mode chosen by the observer. In this case, the light is just in the vacuum state.§ 
However, this "nothing" can indeed cause significant physical effects as will be 
discussed in later sections. 

To make all this more precise, we postulate that the electric field strength AI  of the light 

field is given by 	=t1*(x,t)a+u(x,t)ti II  and that the amplitude operator 'a is a bosonic** 

annihilation operator that obeys the quantum mechanical commutation relation 

[a, a t ] = I, where tt"(x,t) is the complex conjugate of tt(x,t) and 41  is the adjoint (or 

conjugate) of a called the creation operator. ' 1  The hat symbol appearing over 
quantities denotes that they are quantum operators (or observables). Another key 

element of quantum-oscillator physics is the photon number operator ñ , which 

accounts for the number of photons (quantized light particles) in the chosen u(x,t) and 
is given by the quantum mechanical counterpart of a classical modulus-squared 

amplitude: A at  . 

Let us now introduce a pair of operators, 	and 13 , called quadratures. They are 

defined as = 2 	(at +a) and fr= i2 2 (1V —a), which can be inverted to provide the 

additional useful definitions n=2-112(4+0) and ai =_212(4_0 In optics 	and it 

correspond to the in-phase and the out-of-phase component of the electric field 
amplitude of u(x,t) (with respect to a reference phase). The bosonic commutation 

relation demonstrates that'4 and it are canonically conjugate observables, [4,j)] =ih. 

The quadratures c and p can be regarded as the position and the momentum of the 

quantum electromagnetic oscillator. They do not appear in real space but in the phase 
space spanned by the complex vibrational amplitude ó of the quantum electromagnetic 
oscillator, and they have nothing to do with the position and the momentum of a 
photon. However, the canonical commutation relation entitles us to treat 	and it as 

perfect examples of position- and momentum-like quantities in quantum optics. Finally, 

we express the photon number operator #1 in terms of the quadratures j and 13 and 

obtain, using the bosonic commutation relation, the standard Hamiltonian (or total 
energy) of the quantum harmonic (electromagnetic) oscillator with unit mass and 
frequency: 

H 	= ti+1  - 	2 

(1) 
+ 

q   
, 

) Here we always mean by "vacuum" simply "no light" and not an evacuated system. 
" Boson or bosonic refers to quantum particles that have integer quantum spin. 

In quantum mechanics, the vacuum's defined to be a state of no (or zero) particles and is denoted by the 

quantum state eigenvector 10). By definition U "annihilates" the vacuum state: [11 0) = 0  

6 

2 2 

UNCLASSIFIED//fOR 	OITIODAIrW6Creilillarm. 



UNCLASSIFIED/ if or-Kw II"  ." 

where the first and second terms in the second line are the kinetic and potential 
energies of the oscillator, respectively. The additional 1/2 appearing in the first line of 
Eq. (1) is called the vacuum zero-point energy for the reason to be explained in the 
next section. The first line of Eq. (1) is more commonly expressed in units of energy 
(Joules) in quantum mechanics, which is obtained simply by multiplying the right-hand 

side by the photon energy hco so that Hthc. = hco[n+ 7 ). 

It is beyond the scope of this report to elaborate further on the entire subject of the 
quantum optics. The reader should consult Reference [38] for more information. 

Basic Notions on the Origin of the Quantum Vacuum Zero-Point Fluctuations 

Here we discuss the basic notions of the quantum vacuum zero-point fluctuations 
(ZPF), which is an important feature in quantum optics. The origin of the ZPF is 
attributed to the Heisenberg Uncertainty Principle. According to this principle, a and 

a are any two conjugate observables that we are interested in measuring, and they 

obey the commutation relation already shown in the previous section. Their 
corresponding uncertainty relation is AA/i 1-112., where A@ is the variance (a.k.a. 

uncertainty) of observable 	and Afr is that of the conjugate observable a . This 

relation states that if one measures observable a/ with very high precision (i.e., its 

uncertainty Aa is very small), then a simultaneous measurement of observable a will 

be less precise (i.e., its uncertainty AP is very large), and vice versa. In other words, 

it is not possible to simultaneously measure two conjugate observable quantities with 
infinite precision. 

This minimum uncertainty is not due to any correctable flaws in measurement, but 
rather reflects the intrinsic fuzziness in the quantum nature of energy and matter. 
Substantial theoretical and experimental work has shown that in many quantum 
systems the limits to measurement precision is imposed by the quantum vacuum ZPF 
embodied within the uncertainty principle. Nowadays we rather see the Heisenberg 
Uncertainty Principle as a necessary consequence, and therefore, a derived result of the 
wave nature of quantum phenomena. The uncertainties are just a consequence of the 
Fourier nature of conjugate pairs of quantities (observables). For example, the two 
Fourier-wave-conjugates time and frequency become the pair of quantum-particle 
conjugates time and energy and the two Fourier-wave-conjugates displacement and 
wave number become the pair of quantum-particle conjugates position and momentum. 

The Heisenberg Uncertainty Principle dictates that a quantized electromagnetic 
oscillator (a.k.a. a photon state) can never come entirely to rest, since that would be a 
state of exactly zero energy, which is forbidden by the commutation relation given in 

the previous section. Instead, every mode of the field has 4)/2 as its average minimum 
energy in the vacuum, and this is called the zero-point energy (ZPE).' This ZPE term 

is added to the classical blackbody spectral radiation energy density p((o)tho 	the 

energy per unit volume of radiation in the frequency interval ((o, w + d(o)] [25]. 

0 is the energy of a single mode (or photon). 
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/ 	\ 
h(03 	h(t) 

	

— 	 coth 	 de), 
2.7c-c' 	21c8T , 

where kB is Boltzmann's constant (1.3807 X 10-23 3/K) and T is the absolute 
temperature. The factor outside the square brackets in the first line of Eq. (2) is the 
density of mode (or photon) states (i.e., the number of states per unit frequency 
interval per unit volume); the first term inside the square brackets is the standard 
Planck blackbody radiation energy per mode; and the second term inside the square 
brackets is the quantum zero-point energy per mode. Equation (2) is called the Zero-
Point Planck (ZPP) spectral radiation energy density. Planck first added the ZPE term to 
the classical blackbody spectral radiation energy density in 1912, although it was 
Einstein, Hopf, and Stern who actually recognized the physical significance of this term 
in 1913 [25]. Direct spectroscopic evidence for the reality of ZPE was provided by 
Mulliken's boron monoxide spectral band experiments in 1924, several months before 
Heisenberg first derived the ZPE for a harmonic oscillator from his new quantum matrix 
mechanics theory [39]. 

Following this line of reasoning, quantum physics predicts that all of space must be 
filled with quantum electromagnetic ZPF creating a universal sea of zero-point energy. 
The other quantum forces of nature also have their own vacuum ZPF which contributes 
to the universal sea of zero-point energy. But that is beyond the scope of this report. 

Negative (Sub-Vacuum) Energy in Squeezed Light 

Substantial theoretical and experimental work has shown that in many quantum 
systems the limits to measurement precision imposed by the quantum vacuum ZPF can 
be breached by decreasing the noise in one observable (or measurable quantity) at the 
expense of increasing the noise in the conjugate observable; at the same time the 
variations in the first observable, say the energy, are reduced below the ZPF such that 
the energy becomes "negative." "Squeezing" is thus the control of quantum 
fluctuations and corresponding uncertainties, whereby one can squeeze/reduce the 
variance of one (physically important) observable quantity provided the variance in the 
(physically unimportant) conjugate variable is stretched/increased. The squeezed 
quantity possesses an unusually low variance, meaning less variance than would be 
expected on the basis of the equipartition theorem. One can in principle exploit 
quantum squeezing to extract energy from one place in the ordinary vacuum at the 
expense of accumulating excess energy elsewhere [8]. 

The squeezed state of the electromagnetic field is a primary example of a quantum field 
that has negative energy density and negative energy flux. Such a state became a 
physical reality in the laboratory as a result of the nonlinear-optics technique of 
"squeezing," i.e., of moving some of the quantum-fluctuations of laser light out of the 
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cos[w(t— de)] part of the beam and into the sin[w(t — z/c)1 part [18, 40-44].§§ The 

observable that gets squeezed will have its fluctuations reduced below the vacuum ZPF. 

The act of squeezing transforms the phase space circular noise profile characteristic of 
the vacuum into an ellipse, whose semimajor and semiminor axes are given by unequal 
quadrature uncertainties (of the quantized electromagnetic oscillator operators). This 
applies to coherent states in general, and the usual vacuum is also a coherent state 

with eigenvalue zero. As this ellipse rotates about the origin with angular frequency co, 
these unequal quadrature uncertainties manifest themselves in the electromagnetic 
field oscillator energy by periodic occurrences, which are separated by one quarter 
cycle, of both smaller and larger fluctuations compared to the unsqueezed vacuum. 

We digress momentarily by noting that coherent states, also called Glauber states, are 
the eigenstates of the annihilation operator a: 

a), 	 (3) 

which have well-defined amplitudes lal and phases arg(cc) (recall the discussion in Sect. 
JIB-1). They are called coherent states because light fields in these states are perfectly 
coherent, and high-quality lasers generate such fields. This is an important reason why 
high-quality laser light is an excellent tool for experimental quantum optics. Coherent 
states come as close as quantum mechanics allows to wave-like states of the 
electromagnetic oscillator. Because the wave aspects of light are commonly regarded 
as classical, coherent states are often called classical states. Furthermore, fields in 
statistical mixtures of coherent states (such as thermal fields) are classical as well, 
whereas any state that cannot be understood as an ensemble of coherent states is 
called nonclassical. The experimental generation and application of nonclassical light 
fields is the main subject of this report. Despite much recent progress, producing 
nonclassical states of light is still extremely challenging because they are easily 
destroyed (reduced to classical) by any kind of losses. Furthermore, it turns out that 

the vacuum is a coherent state as well because it satisfies Eq. (3) for a = 0. In other 
words, the vacuum is a zero-amplitude coherent state. With a little algebra we see 
directly from Eq. (3) that the mean (i.e., quantum expectation value of the) energy of a 
coherent state with unit frequency is 

Klia )=Kalata+ 

= lar I  • + 2 

Equation (4) is the sum of the classical wave intensity 1a12  and the vacuum zero-point 

energy 1/2. One simply multiplies the right-hand side of Eq. (4) by tic') to put Ktia ) 

into units of energy. 

z denotes the z-axis direction of beam propagation. 
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Morris and Thorne [8] and Caves [45] point out that if one squeezes the vacuum, i.e., if 
one puts vacuum rather than laser light into the input port of a squeezing device, then 
one gets at the output an electromagnetic field with weaker fluctuations and thus less 

energy density than the vacuum at locations where c0.c 2 [(oh —JO] I and 

.sin 2 [(1)(t—z./01 « 1; but with greater fluctuations and thus greater energy density 

than the vacuum at locations where cos'[(1)(t—z/01 « 1 and sin'[w(t — 	. 

Since the vacuum is defined to have vanishing energy density, any region with less 
energy density than the vacuum actually has a negative (renormalized) expectation 
value for the energy density. Therefore, a squeezed vacuum state consists of a 
traveling electromagnetic wave that oscillates back and forth between negative energy 
density and positive energy density, but has positive time-averaged energy density. 

In quantum optics the squeezed state is generated by the unitary squeezing operator: 

  

S exp (5) 

  

where 4 is a real number that parameterizes the deviation of the variances 4,(2 and A/5 

from their vacuum values and is called the squeezing parameter. From Eq. (5) we 

obtain the squeezed vacuum state ( p)=S-'( )1°)• The squeezing operator S(;) is simply 

an evolution operator that describes the result of the nonlinear squeezing interaction 

Hamiltonian Him  = 	—ba'). The squeezing parameter 4 contains the product of 

the amplitude b, the coupling constant ^,c, and the interaction time. 

But this is not the entire story. Since we will be dealing with high-quality lasers in what 
follows, we also need to know about another important quantum optics operator that 
acts on coherent states. We introduce the unitary displacement operator 

b(a)=exp(aia 	D(a) displaces the amplitude Zi by the complex number a 

according to 15t(a)a /5(a),  a +a. To show why h(a) has anything to do with coherent 

states, we apply a negative displacement to a.). From the basic property of D(u), we 

see that 

a ii(-0)1a) = ii(-0/51(-u) a 15(-cola) 

a) 
	

(6) 

=0. 

Equation (6) equals zero because of the definition Eq. (3) of coherent states. This 

result implies that D(—()oh= fi), which is the vacuum state. Therefore, coherent 

states a) are displaced vacua a)= ii(a)0) . This does not mean that coherent states 
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are physically similar to vacuum states, but instead they have only some quantum 
noise properties in common. It is a well known result in the quantum field theory of 
light that the vacuum wave function is a simple Gaussian function of the quadratures 
(in either 4 or "I) representation), and thus coherent states are also Gaussian [38]. 

Furthermore, a proof of Heisenberg's Uncertainty Principle in conjunction with the 

application of 5(4) and /5(a) on the quadrature variances and wave functions showed 

that all minimum uncertainty states are displaced Gaussian states such that they have 
displaced rescaled vacuum wave functions. Consequently, all minimum uncertainty 
states are displaced squeezed vacua [18, 38]: 

1 10 1-5(a)(01°). 	 (7) 

The squeezing interaction 11., is realized by the degenerate parametric amplification of 

the spatial-temporal mode. A crystal such as potassium titanyl phosphate (KTP) or 
lithium niobate (LiNb03) is pumped by another laser beam with amplitude b and twice 

the frequency of the spatial-temporal mode (with amplitude II) of interest. According to 

km , the "B" photons (corresponding to b) of the pump beam are converted into pairs 

of "A" signal photons (corresponding to a2  and .41'2) with a probability that depends on 

the coupling constant x. The KTP or LiNb03 crystal acts like an electromagnetic swing, 
and the pump modulates the oscillation of the "A" mode at twice its frequency. The 
pump amplifies the signal parametrically much as a swing is amplified by changing the 
effective length at twice the frequency of the swing. A classical swing relies on tiny 
initial fluctuations (or "wobbles") that are in-phase with respect to the parametric 
pump. In this way, the tiny fluctuations are amplified; the swing starts to oscillate. A 
quantum swing like the degenerate parametric amplifier experiences at least the 
vacuum fluctuations from the very beginning. Vacuum fluctuations that are in-phase 
with respect to the pump are amplified, whereas out-of-phase fluctuations get de-
amplified or, in other words, squeezed. 

A squeezed vacuum requires a pump for generation, and, hence, when produced it 
carries energy. The nonlinear crystal KTP or LiNb03 is a resonator that is shaped like a 
cylinder with rounded silvered ends to reflect light. This resonator acts to produce a 
secondary lower frequency light beam in which the pattern of photons is rearranged 
into pairs. The squeezed light emerging from the resonator will contain pulses of 
negative energy interspersed with pulses of positive energy. To quantify the amount of 

squeezing energy we 1) apply S(;) to the quadratures and find that it scales their 

eigenfunctions;*" 2) we then substitute for a its quadrature decomposition (given in 
Sect. III3-1) and substitute that result into the scaled quadratures; and then 3) do 

further algebra to derive how ..S.(4) changes a: .c'* (4])(a].)—aco.sh4—al sinh4. We 

substitute this last result into Eq. (1) and use Eq. (7) to calculate the quantum 
expectation value in order to express the mean energy of a squeezed state, and obtain 

i.e., 4 gets squeezed and fia gets stretched. 
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(WIliscivac w) =k 2 	+ 	 (8) 

Equation (8) really describes the mean photon number of a single mode in a squeezed 

state, but one simply multiplies the right-hand side by h(oto get the mean energy 
1 

= fR0( a
2 
 ++sinh 24). We see in Eq. (8) that there are three terms 

sirac 	 2 

contributing to the energy: the first term accounts for the coherent energy given by 

1(112, the second term is the vacuum zero-point energy 1/2, and the third term 
quantifies the fluctuation energy of squeezed states. The contribution to this squeezing 
energy originally comes from the pump used to generate the squeezed light. It is 
stored in the enhanced fluctuations of the anti-squeezed component. Because both the 
squeezed and the anti-squeezed quadratures contribute to the second line in Eq. (1), 
even a squeezed vacuum carries energy. 

However, Eq. (8) is not the final result because it only gives the mean energy of a 
single mode in a squeezed state, while lasers and nonlinear crystal resonators produce 
a very large number of modes. Equation (8) needs to be summed (integrated) over the 
infinite number of possible modes; it must then be "renormalized" by sophisticated 
mathematical techniques in order to get rid of the divergent (infinite) contribution from 
the vacuum zero-point energy (a byproduct of taking an infinite sum of modes); and 
then the result must be converted into units of energy density by dividing it by an 
appropriate volume element, because Einstein's general theory of relativity requires an 
energy density (or pressure, both are in the same units) to induce spacetime bending. 

The final result we seek is the energy density, pr,,,p,„„ given by Pfenning [46]: 

 

no)  
L3 	

sini<sinh4+cosh4cos(2o(t — zle)+ 5)] (J / ), 	(9) PE_sqva, — 

 

where L3  is the volume of a large box with sides of length L (i.e., we put the quantum 

field in a box with periodic boundary conditions) and 6 is the phase of squeezing. 

Equation (9) shows that PE-•Lp‘ic falls below zero once every cycle when the condition 

cosh 4> sinhE, is met. It turns out that this is always true for every nonzero value of ED, 

so pr,,,F), becomes negative at some point in the cycle for a general squeezed vacuum 
state. See Figure 1 for an illustration. Note in the figure that the blue troughs or 
valleys are the negative energy pulses. On another note, when a quantum state is 
close to a squeezed vacuum state, there will almost always be some negative energy 
densities present. 

Another way to generate negative energy via squeezed light would be to manufacture 
extremely reliable light pulses containing precisely one, two, three, etc., photons apiece 
and combine them together to create squeezed states to order. Superimposing many 
such states could theoretically produce bursts of intense negative energy. Photonic 
crystal research has already demonstrated the feasibility of using photonic crystal 
waveguides (mixing together the classical and quantum properties of optical materials) 
to engineer light sources that produce beams containing precisely one, two, three, etc., 
photons. See Reference [1] for more details and for the references cited therein. 
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Figure 1. Illustration of a Squeezed State of Light. (courtesy of Lisa Burnett) 

Negative (Sub-Vacuum) Energy in the Casimir Effect 

The Casimir effect originates from the quantum electromagnetic vacuum ZPF. It is by 
far the easiest and most well known way to generate (static) negative energy in the 
lab. The Casimir effect that is familiar to most people is the force that is associated 
with the quantum vacuum electromagnetic ZPF [47]. This is an attractive force that 
must exist between any two neutral (uncharged), parallel, flat, conducting surfaces 
(e.g., metallic plates) in a vacuum. This force has been well measured and it can be 
attributed to a minute imbalance in the vacuum electromagnetic ZPE density inside the 
cavity between the conducting surfaces versus the vacuum electromagnetic ZPE density 
in the free-space region outside of the cavity [48-50]. See Figure 2 for a schematic of 
the Casimir effect. 

13 
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Figure 2. Schematic of the Casimir Effect. 

It turns out that there are many different types of Casimir effects found in quantum 
field theory [20-22, 26-28, 51]. For example, if one introduces a single infinite plane 
conductor into the Minkovvski (flat spacetime) vacuum by bringing it adiabatically from 
infinity so that whatever quantum fields are present suffer no excitation but remain in 
their ground states, then the vacuum (electromagnetic) stresses induced by the 
presence of the infinite plane conductor produces a Casimir effect. This result holds 
equally well when two parallel plane conductors (with separation distance d) are 
present, which gives rise to the familiar Casimir effect inside a cavity. Note that in both 
cases, the spacetime manifold is made incomplete by the introduction of the plane 
conductor boundary condition(s). The vacuum region put under stress by the presence 
of the plane conductor(s) is called the Casimir vacuum. The generic expression for the 

energy density of the Casimir effect is pcc  =—Ahed-4 , where A = c(D)/8TE 2  in 

spacetimes of arbitrary dimension D [20-22]. The appearance of the zeta-function c(D) 
is characteristic of expressions for vacuum stress-energy tensors, T7,.*** In our 

familiar 4-dimensional spacetime (D = 4) we have that A = 72 /720 . To calculate 

for a given quantum field is to calculate its associated Casimir effect. 

We should also point out that the methods used to obtain the quantum vacuum 

electromagnetic 71 between parallel plane conductors can also be used when the 

conductors are not parallel but are joined together along a line of intersection. If the 
conductors have curved surfaces instead, then one obtains results that are similar to 
the case of intersecting conductors. These geometries have also been evaluated for the 

))) The Greek tensor indices (p,v = a. 3) denote spacetime coordinates, x°.. x', such that x' . x' space 

coordinates and x° a time coordinate. Note in general that T at' =p, (field energy cleacity) 
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case of dielectric media. These particular cases will not be considered further since 
there are technical subtleties involved that complicate the calculations and application 
of the different approaches. 

As a final note, negative energy can be created by a single moving reflecting 
(conducting) surface (a.k.a. a moving mirror) via the dynamical Casimir effect. A 
mirror moving with increasing acceleration generates a flux of negative energy that 
emanates from its surface and flows out into the space ahead of the mirror [23, 52]. 
This is essentially the simple case of an infinite plane conductor undergoing acceleration 
perpendicular to its surface. If the acceleration varies with time, the conductor will 
generally emit or absorb photons (i.e., exchange energy with the vacuum), even 
though it is neutral. This is an example of the well-known quantum phenomenon of 
parametric excitation. The parameters of the quantum electromagnetic oscillators 
(e.g., their frequency distribution function) change with time owing to the acceleration 
of the mirror [53]. However, this effect is known to be exceedingly small, and it is not 
the most effective way to produce negative energy for our purposes. We will not 
consider this scheme any further. 

QUANTUM OPTICAL HOMODYNE TOMOGRAPHY 

Observing Negative Energy in the Lab 

Negative energy should be observable in lab experiments. A generic, non-optical 
scheme for detecting negative energy in experiments was recently reported by Davies 
and Ottewill [54] who studied the response of switched particle detectors to static 
negative energy densities and negative energy fluxes. Their model is based on a free 
(massless) scalar field in flat 4-dimensional Minkowski spacetime and utilized a simple 
generalization of the standard monopole detector, which is switched on and off to 
concentrate the measurements on periods of isolated negative energy density (or 
negative energy flux). The detector model includes an explicit switching factor whereby 
five different switching functions (based on data windowing theory) are defined and 
evaluated. 

In order to isolate the effects of negative energy, a comparison is made for the 
response of a detector switched on and off during a period of negative energy density 
(or negative energy flux) and that switched on and off in the vacuum. The results shed 
light on the response of matter (detectors) to pulses of negative energy of finite 
duration, and they showed that negative energy should have the effect of enhancing 
de-excitation (i.e., induce cooling) of the detector. This is the opposite of our 
experience with detectors that undergo excitation when encountering "normal" matter 
or energy, and isolated detectors placed in a vacuum naturally cool due to the usual 
thermodynamic reasons. But Davies and Ottewill point out that the enhanced cooling 
effect they discovered cannot be used to draw a thermodynamic conclusion because 
their modeling was restricted to first order in perturbation theory. It is not possible at 
first order to determine whether the enhanced cooling effects are due to the small 
violation of energy conservation expected in any process in which a general quantum 
state collapses to an energy eigenstate, or whether they predict a systematic reduction 
in the energy of the detector which has serious thermodynamic implications. However, 
Davies and Ottewill point out that their results are model dependent and they found for 
their standard monopole detector model that there is not always a simple relationship 
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between the strength of the negative energy density/flux and the behavior of the 
detector. 

It is curious that Davies and Ottewill did not consider using quantum optical homodyne 
tomography as a tool to test their hypothesis, because this is already a mature 
experimental discipline. In what follows we outline the basics of quantum optical 
homodyne tomography and its application to detecting and measuring negative energy 
density/flux states in squeezed light and in the Casimir effect. 

Basic Notions of Quantum Optical Homodyne Tomography 

Tomography, from the Greek word for slice, is a method to infer the shape of a hidden 
object from its shadows (or projections) under various angles. Quantum tomography is 
the application of this idea to quantum mechanics. In optical homodyne tomography, 
the Wigner function or, more generally, the quantum state plays the role of the hidden 
object. The observable "quantum shadows" are the quadrature distributions and are 
measured using homodyne detection. From these distributions the Wigner function is 
reconstructed. See Figure 3 for an illustration of quantum optical homodyne 
tomography. The vertical 2-dimensional plane seen in the figure is fictitious and is 
shown for illustrative purposes only. 

Figure 3. Illustration of Quantum Optical Homodyne Tomography (courtesy of Ulf Leonhardt). 
The Wigner function (3-dimensional hill on the right) is reconstructed in quantum phase space 
(gridded plane formed by quadratures q and p) from its experimentally measured projections (curve in 
vertical 2-dimensional plane), which represents the scanning process of tomography. The vertical axis 
is the magnitude of the Wigner (quasiprobability) function. 

Quantum tomography was developed for the simple reason that a fundamental feature 
of quantum mechanics prevents us from seeing physical objects in their full quantum 
complexity. This is due to the intrinsic fuzziness in the quantum nature of energy and 
matter according to the Heisenberg Uncertainty Principle, which prevents us from 
simultaneously and precisely measuring the complementary features (e.g., position and 
momentum or energy and time) comprising quantum states. For this reason we cannot 
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directly observe quantum states, and so the true nature of an individual quantum 
system is hidden. However, no principal obstacle exists to observing all complementary 
aspects in a series of distinct experiments on identically prepared quantum objects. 

In the sections that follow, we briefly review the several parts that comprise the 
tomography machinery, and then put the whole picture together to understand what 
the entire process is. No effort will be made for completeness because the subject of 
quantum tomography takes up volumes of books. The reader will be referred to the 
key literature of importance. 

Wigner Functions 

In classical optics the state of an electromagnetic oscillator is perfectly described by the 

statistics of the classical amplitude a. The amplitude may be completely fixed (then 

the field is coherent), or a may fluctuate (then the field is partially coherent or 
incoherent). In classical optics as well as in classical mechanics, we can characterize 

the statistics of the complex amplitude a or, equivalently, the statistics of the 
component position q and momentum p by introducing a phase space distribution called 
the Wigner function, W(q,p).' W(q,p) quantifies the probability of finding a particular 

pair of q and p values in their simultaneous measurement. Knowing W(q,p) for a 
particular quantum state that is under study, all statistical quantities of the 
electromagnetic oscillator can be predicted by calculation. In this sense W(q,p) 
describes the state in classical physics. The motivation for introducing the Wigner 
function was the desire to find a quantum mechanical description similar to that in 
classical statistical physics. However, in quantum mechanics Heisenberg's Uncertainty 
Principle prevents one from observing position and momentum simultaneously and 
precisely. In addition to this, we also cannot directly observe quantum states either. 
Nevertheless, we are perfectly entitled to use the concept of quantum states as if they 
were existing entities. We use their properties to predict the statistics of observations. 

It is well known that the quantum mechanical wave function depends exclusively on 
either the position or the momentum and contains nevertheless all the information 
about the quantum system under study. However, E. Wigner showed that it is possible 
to define a formal quantum mechanical analog to the classical distribution function. He 
showed that we could use W(q,p) as a quantum phase space distribution exclusively to 
calculate observables in a classical-like fashion. Wigner discovered that W(q,p) is a 
real-valued function, but it is usually not just positive; it can also become negative. 
This is a very nonclassical behavior for a probability distribution. It is for this reason 
that W(q,p) came to be called a quasiprobability distribution. 

W(q,p) has several properties and mathematical postulates, but it turns out that just 
one postulate is sufficient for the purposes of quantum tomography [38]. Using this 
postulate, it is assumed that W(q,p) behaves like a joint probability distribution for q 

and p without ever mentioning any simultaneous observation of position and 

momentum. The reduced, or marginal, distributions 
J 

W (q, p)dp or 
J 

W (q, p)dq 

Recall in Sect. 1113-1 that the real and the imaginary parts of the complex amplitude c.t can be regarded as the 
position and the momentum of the electromagnetic oscillator. 

17 
UNCLASSIFIED/ AW1,14.Q,KFkaliailzmidesSeNa 



UNCLASSIFIED//OWrICIAL 	WEE 9111S 

must give the position or the momentum distribution, respectively. Furthermore, if one 

performs a phase shift 0 all complex amplitudes El are shifted in phase, §§§ meaning that 

the components q and p rotate in the 2-dimensional phase space (q,p). A classical 
probability distribution for position and momentum values would rotate accordingly. 

This fact leads to the postulate that the position probability distribution pr(q,0) after an 

arbitrary phase shift 0 should be [38] 

pr(q,0) —= (q 00m5 Ot(o) q) 

= 	Mq cos 0 —p sin 0, q sin° +p cos 0)dp , 
	(10) 

where P is the quantum density operator (or density matrix) which describes the 

statistical (or most general) state of a quantum system. The first line in Eq. (10) is the 
quantum expectation value of the phase-shifted 3 , which simply gives the probability 

distribution for the q-eigenstates to occur with probabilities p q  (the elements of p ). 

This single formula joins W(q,p) with quantum mechanics. It ties W(q,p)to observable 
quantities, and it links quantum states to observations. 

It is beyond the scope of this report to repeat the entire mathematical development of 
the explicit functional representations, identities, transformations and modifications of 
W(q,p). The reader should consult Reference [38] for more information. However, 
Figures 4 through 7 provide an example of what the experimentally reconstructed 
Wigner function visually looks like from the quantum optical homodyne tomography of 
the following cases of interest: a vacuum state, a coherent state, a squeezed vacuum 
state, a single photon, and Schredinger cat states. The Schrodinger cat states are a 
very interesting case study of unusual nonclassical states of light that have been 
experimentally measured via quantum optical homodyne tomography. 

The unitary phase shifting operator is /RP) w exp(—i0A), where ri is the photon number operator and 0 is the 

phase shift angle. Its action on the amplitude a is: 0*(0) a (0) = aexp(—i0). 
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Figure 4. Wigner Function for a Vacuum (top) and for a Coherent State (bottom). This 
clearly shows that coherent states are just "displaced vacua" (Sect. IIB-3). Optical homodyne 
tomography was used to reconstruct the Wigner functions from experimental data (courtesy of Ulf 
Leonhardt). 
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Figure S. Wigner Function of a Squeezed Vacuum. Wigner function (top) and quadrature 
fluctuations (bottom). This shows the experimentally reconstructed Wigner function of a 
significantly squeezed vacuum generated by parametric amplification (Sect. IIB-3). The noise 
trace (bottom) shows a part of the experimental data used to reconstruct the depicted Wigner 
function via optical homodyne tomography (courtesy of Ulf Leonhardt). 
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Figure 6. Wigner Function of a Single Photon. The figure shows the experimentally 
reconstructed Wigner function as seen from above (top) and from below (bottom). 
Negative "probabilities" are clearly visible near the origin of the phase space, which demonstrates 
the nonclassical aspect of photons (courtesy of Ulf Leonhardt). 
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Figure 7. Quantum Tomography of Schriidinger-Cat States. Top: go = 3. Two separated 
coherent amplitudes (peaks) are clearly visible. Bottom: go = 4. The larger the separation of the 
amplitudes, the more rapid is the oscillation in the quantum interference structure between the 
two peaks. Negative probabilities appear within the quantum interference structure. The 
experimental data used to reconstruct the depicted Wigner functions was provided by A. Furusawa 
and H. Yonezawa, University of Tokyo. 

We digress for the moment to explain what Schrodinger cat states are. Schrodinger's 
cat is a famous illustration of the principle of superposition in quantum theory that was 
proposed as a thought experiment by Erwin Schrodinger in 1935. Schrodinger's cat 
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serves to demonstrate the apparent conflict of what quantum theory tells us is true 
about the nature and behavior of matter on the quantum (atomic or subatomic) level 
compared with what we actually observe to be true about the nature and behavior of 
matter on the macroscopic level. 

Schrbdinger's thought experiment is as follows: One places a living cat into a steel 
chamber along with a device containing a vial of hydrocyanic acid. There is also a very 
small amount of a radioactive substance inside the chamber. If even a single atom of 
the substance decays during the test period, then a relay mechanism will trip a 
hammer, which will in turn break the vial and kill the cat. 

The observer cannot know whether or not an atom of the radioactive substance has 
decayed, and consequently, cannot know whether the vial has been broken, the 
hydrocyanic acid released, and the cat killed. Since one cannot know, the cat is both 
dead and alive in a superposition of quantum states according to the quantum 
superposition principle. It is only when one breaks open the box and learns the 
condition of the cat that the superposition is lost, and the cat becomes either dead or 
alive. This situation is sometimes called quantum indeterminacy or the observer's 
paradox: the act of observation or measurement itself affects the outcome, so that the 
outcome as such does not exist unless, and until, the measurement is made. (That is, 
there is no single outcome unless it is observed.) 

According to the fundamental superposition principle of quantum mechanics, we are 
entitled to think of quantum superpositions of coherent states. These are states that 
contain simultaneously two coherent components (or states), one pointing in one 
direction in phase space and the other pointing in another direction. We label the 
former component the "alive-cat" state and the latter component the "dead-cat state." 
The position wave function 	of such a state would be the superposition of two 
coherent state (Gaussian) wave functions [38]: 

1 
T(g) oc exp[ 	(g g„)2  + exp —1(g + g„)2  

2 	 L 2 

The normalization factor has been omitted in Eq. (11 because it is not important here. 

Equation (11) shows that T has two peaks, one at +go (alive-cat state) and the other at 

—go (dead-cat state) according to the superimposed coherent amplitudes. Also, Eq. 
(11) has nothing to do with optical interference. When two fields interfere, their 
amplitude may be enhanced or canceled, producing, for example, coherent states of 
enhanced or zero amplitude (vacuum). The quantum superposition shown in Eq. (11) 

still contains both coherent amplitudes -±go. It is also much different from an 

incoherent superposition of ±-qn, where the field has either the amplitude -Rio or the 

amplitude —go with certain probabilities. The quadrature amplitude of 'V is +go as well 

as —go (simultaneously!), with a resolution given by the vacuum fluctuations. 

This strange behavior of 41  being simultaneously at +qo and —qo turns out to be the best 
representation of Schrodinger's famous thought experiment in the quantum field theory 
of light. Schredinger cat states are difficult to observe in the optical domain because 
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they are extremely vulnerable to quantum decoherence. Quantum decoherence is 
caused by linear losses, and it is the main reason why the extremely strange quantum 
phenomena allowed in quantum theory are very difficult to observe in practice. 
However, the good news is that investigators have successfully controlled or 
suppressed quantum decoherence to such a high degree that Schrodinger cat states 
were experimentally observed and measured using optical homodyne tomography [55, 
56]. Figure 7 shows the experimentally reconstructed Wigner functions for two 

Schrodinger cat states that have different amplitude values ±-yo. The observed peaks at 

±qo seen in the figure are of small magnitude, so investigators euphemistically call 
these "Schrbdinger kitten states." As seen in the figure, the interference structure 
halfway between the peaks displays the quantum superposition of both amplitudes, 
showing rapid oscillations with a frequency given by the distance 210 of the 
superimposed amplitudes. Also seen in the figure is that the two reconstructed Wigner 
functions become negative (i.e., negative "probabilities"), indicating the nonclassical 
behavior of Schrodinger cat/kitten states. 

Beam Splitters 

A very important device that is used to demonstrate the quantum nature of light is the 
simple optical beam splitter. A large number of strange quantum effects have been 
experimentally observed by splitting or recombining photons using a small cube of 
glass. The beam splitter also serves as a theoretical model for other linear optical 
devices such as interferometers, semitransparent mirrors, dielectric interfaces, wave-
guide couplers, and polarizers. The beam splitter model can also be used to account for 
the effect of absorption, mode mismatch, and other linear losses. 

An ideal beam splitter is a reversible, lossless device in which two incident beams of 
light may interfere to produce two emerging beams [38]. For example, a dielectric 
interface inside a cube or plate of glass splits a light beam into two. This situation may 
be reversed by sending the two beams back to the cube (or plate) where they interfere 
constructively to restore the original beam. However, if the phases of the two beams 
are changed, then their mutual interference generates two emerging beams in general. 
So four beams might be involved, two incident light modes and two outgoing light 
modes, and the splitting of just one beam is a special case. Therefore, the most 
general theoretical beam splitter model is a four-port device, which is simply a "black 
box" with two input and two output ports having certain mathematical and physical 
properties [38]. See Figure 8 for a schematic of an ideal lossless four-port beam 
splitter. 

The beam splitter is quantum mechanically described by a simple unitary 
transformation operator (or matrix), based on an analog transformation matrix in 
classical optics,"" which mathematically transforms the two input light modes into the 
two output light modes. This operator is unitary, which reflects the fact that a lossless 

beam splitter conserves energy and that the total light mode intensity eliteli  +a;a2  is an 

invariant quantity. Since the incoming and the outgoing light modes are both 
independent bosonic modes, their annihilation operators must satisfy the following 

In classical optics, the components of the transformation matrix of a real beam splitter are simply the 
transmissivity and reflectivity, which account for the transmission and reflection probabilities of photons passing 
through the glass cube or plate. 
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bosonic commutation relations: [a', &:] =[a ,a=61„, and [aIc,a] =0, , a„,]= 0, 

where tik, (= I if f = in and 0 if t # in) is the Kronecker delta and the indices (t, In) are 
integers [38]. 

A beam splitter is a four-port device not only in the case of two incoming light modes 
interfering to produce two emerging light modes; a beam splitter is always a four-port 
device. Even if only one beam is split into two beams, if literally nothing behind the 
semitransparent mirror is interfering with the incident beam, quantum mechanically this 
nothing means a vacuum state. The very possibility that the second light mode behind 
the mirror might be excited makes a difference. The vacuum fluctuations carried by the 
empty mode (and entering the apparatus via the so-called unused input port of the 
beam splitter) do cause physical effects. Therefore, the vacuum fluctuations entering 
the second (unused) input port of the beam splitter must always be assigned a formal 
mode operator, a,, in order for the system to 1) conserve energy, 2) obey the beam 
splitter's aforementioned bosonic commutation relations and 3) guarantee that the two 
outgoing beams are independent bosonic light modes. 

first output 
.1 al  

Figure 8. Schematic of an Ideal Lossless Beam Splitter. Two 
incident spatial-temporal light modes (with the annihilation operators al  
and 52) interfere optically to produce two emerging light modes (with 
the annihilation operators 6', and 6 2  )(courtesy of Ulf Leonhardt). 

In Figure 9 we illustrate the effect of vacuum fluctuations for the case of a fictitious 
beam splitter, which is a model for describing linear absorption or, equivalently, 
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detection losses. The input signal a is attenuated and, simultaneously, contaminated 
by the vacuum fluctuations entering the second (unused) input port of the fictitious 
beam splitter. The absorber acts like a fictitious beam splitter, and when light is 
attenuated it can be imagined as being split into a transmitted part and an absorbed 
part. On the other hand, we know from the fluctuation-dissipation theorem that losses 
are always accompanied by fluctuations [57]. At least the vacuum fluctuations of the 
absorbing medium must be taken into account. In the simple absorber model, these 
fluctuations come into play via the second (unused) input port of the fictitious beam 
splitter as shown in Figure 9. The annihilation operator a of the partially absorbed 
(input signal) mode is transformed by the fictitious beam splitter according to 

/11 =11'12a +0 —you' a„ where the factor i (0< i < I) reduces the intensity of any initial 

coherent state a) to Tra) after undergoing partial absorption, a is the output signal 

mode that goes to the detector (which counts the number of photons it absorbs, 

ft' ana'), and a,  is the mode operator of the vacuum fluctuations entering the second 

(unused) input port of the fictitious beam splitter. The second term (1-1-)112 (12  in a' is 

essential to guarantee that the attenuated light field remains a proper bosonic mode, 
otherwise energy conservation and the aforementioned bosonic commutation relations 
would be violated. 

Finally, we note without further elaboration that the mode operators, quadrature wave 
functions, and Wigner functions are all rotated through some angle under the action of 
a beam splitter. And the Wigner function of a signal is smoothed during absorption 
under the action of a fictitious beam splitter. This provides additional models to 
develop the properties of other types of optical instruments and understand their 
behavior on incoming light modes (or input signals). 

> absorption 

detector 
- a at  

Figure 9. Illustration of a Fictitious Beam Splitter. 
(courtesy of Ulf Leonhardt) 
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Photodiodes 

Most photodetectors apply a version of the photoelectric effect to operate in which 
incident light radiation ionizes a piece of photosensitive material in the detector and 
produces freely moving electrons, i.e., an electric current is created that can be 
amplified and handled by electronic means. A commonly used type of detector is the 
linear-response photodiode. In most cases, the photosensitive part of the detector is a 
P-I-N structure, a sandwich of Positively doped, Intrinsic, and Negatively doped 
semiconductor material. Commonly, silicon (Si) or indium gallium arsenide (InGaAs) 

are used where Si detects light out to a 1 um wavelength and InGaAs operates in the 

range 0.19 um to 2.6 um. A bias voltage of about 10 Volts is applied to drain the 
majority carriers (electrons in N and holes in P) out of the intrinsic zone. In this 
depletion region an unstable situation is created for the minority carriers. As soon as 
electron-hole pairs are present in the intrinsic zone, the bias voltage produces a current 
that is proportional to the number of carriers. Electrons in the valence band are lifted 
into the conduction band by the absorption of light radiation, i.e., the absorption of a 
single photon lifts one electron into the conduction band, which creates electron-hole 
pairs in the depletion zone. This process can be made highly efficient because the 
applied voltage is very low so that no avalanche of charge carriers into the conduction 
band (via collisions) is formed. The current response of the detector is linear in the 
intensity of the detected light. However, thermal fluctuations cause Nyquist noise in 
the photocurrent. Thermal effects also create electron-hole pairs in the depletion zone 
thus producing dark current, which is electronic noise. Because of this electronic noise, 
linear-response photodiodes do not reach single-photon resolution. They are suitable 
for relatively high intensities, greater than about 100 photons per microsecond. 

There are inefficiencies and noise associated with realistic photodetection. A convenient 
model to understand the effect these have on experiments is provided by imagining a 
fictitious beam splitter placed in front of an ideal detector. See Figure 9. Only the 
transmitted photons are counted, so that the transmissivity of the fictitious beam 
splitter corresponds to the detection efficiency. Dissipation is always accompanied by 
fluctuations. These degrade the quantum noise properties of the detected light. The 
fluctuations are modeled by a vacuum entering the unused port of the fictitious beam 
splitter. This analysis shows how the nonclassical features of light are lost when the 
detectors are inefficient. 

Balanced Homodyne Detection 

Under idealized conditions the photon number is measured in direct photodetection. 
However, another method of detection exists, in which the light field amplitudes (the 
quadrature components) are measured instead of the quantized light intensity. 
Intensity (photon number) and field amplitude (quadrature) are distinct quantities. 
There is no simple relationship between the photon statistics and the quadrature 
distributions in the quantum regime, but the two are shown to be related via the 
mathematics and procedures of quantum state sampling [38]. Furthermore, the field 
amplitudes contain phase information, and so they are dependent on phase. 
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Quadrature components 40  are definedtTtT  with respect to a certain reference phase 0 

that can be varied experimentally. 

The principle scheme of a balanced homodyne detector is depicted in Figure 10. The 
signal interferes with a coherent laser beam at a well-balanced 50:50 beam splitter. 
The laser light field is called the local oscillator (L0), and it provides the phase 

reference 0 for the quadrature measurement. It is assumed that the signal and the LO 
have a fixed phase relation, as is the case in most experiments applying homodyne 
detection, because both fields are ultimately generated by a common master laser. The 
LO should be intense with respect to the signal for providing a precise phase reference. 
It is also assumed that the LO is powerful enough to be treated classically, i.e., we 
totally neglect the quantum fluctuations of the LO. After the optical mixing of the signal 
with the LO, each emerging beam is directed to a linear-response photodiode. The 
photocurrents /1 and I, are measured, electronically processed, and finally subtracted 

from each other. The difference current hi =iz — i] is the quantity of interest because 
it contains the interference term of the LO and the signal. It is assumed for simplicity 
that the measured photocurrents /i and 12 are proportional to the photon numbers hi  

and h, of the beams striking each detector, which are given by it, =a r:ri; and 

ay-  af, in terms of the mode operators 12', = 216 —ai„) and a', =2-u2(6 a) of 

the fields emerging from the beam splitter [38]. Here a denotes the annihilation 

operator of the signal and al.° is the complex amplitude of the LO. 

The difference current 12] is proportional to the difference photon number (assuming 

perfect quantum efficiency) 1721  = 	= olci+awa , where alt]o  is the complex 

conjugate of aw. The phase of the LO is 0, and so we note from the definition of ae 

that the measured quantity /21 is indeed proportional to 40  because /221  = 21j 1au140, 
which is a result that has been verified by more sophisticated theories of homodyne 

detection [38]. A balanced homodyne detector measures ij0  . The reference phase 0 is 

provided by the LO and can be varied by adjusting the LO using a piezo-electrically 
movable mirror, for example. An experimental method for finding the scaling of 40  in 

the difference current /21 is to keep a record of the sum current because the sum of /1 

and /2 is proportional to cljd to leading order [38]. This can be experimentally 

important because the intensity of the LO is usually an unknown quantity. 

We note that phase shifting rotates the quadratures, di°  t-j t  (0)4' (0) = q co.sO + ',sine and 

fto  m U .  (0)i) 0(0)= —disinft+ //cos°, via the quadrature decomposition defined in Sect. JIB-1 and the phase 

shifting property of the annihilation operator defined in Sect. 'JIB-i. 
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Figure 10. Schematic of a Balanced Homodyne 
Detector. (courtesy of Ulf Leonhardt) 

Furthermore, the balanced homodyne detector is also an amplifier. The LO amplifies 
the signal by the mutual optical mixing of the two. In other words, the homodyne 
detector is an interferometer that can be measurably imbalanced by a single photon in 
the signal mode because the reference field is very intense. A very important technical 
advantage of this is that the amplified signal is well above the electronic noise floor of 
the photodiodes. The signal amplitude is enhanced so that even the noisy linear-
response photodiodes can detect the quantum features of the signal with single photon 
resolution. Because the LO serves as a coherent amplifier, it also chooses the signal 
mode. The LO singles out one spatial-temporal (bosonic) mode from the rest of the 
continuous quantum field "light" (that matches the LO field). In this way the observer 
separates the quantum object (a single optical mode) from the rest of the world. The 
mode function is given by the spatial-temporal shape of the LO beam at the detector 
surface and during the measurement time interval [0,T]. The overall phase and 

intensity of the LO is comprised in the complex amplitude ccw. Shifting the phase 0 = 

arg(aw) rotates the measured ice  . The observer defines via the LO the frame in space 

and time that is subject to the field-quadrature measurement. By tailoring the shape of 
the LO beam high spatial-temporal resolution can be achieved. 

Photodetection is usually not completely efficient in practice so it is important to 
describe the influence of inefficiencies on homodyne detection. This is easily done by 
using the simple model for losses in direct photodetection that was given in Section 
IIIB-2. We imagine fictitious beam splitters to be placed in front of the two (assumed 
ideal) detectors in the measurement setup (see Figure 11). We use 

29 
UNCLASSIFIED/ /Filitairaili t 



UNCLASSIFIED/it" 

= nu'a +0 -)2ñ7  from Section IIIB-2 to define the annihilation operators of the 
, 	 - 

detected light modes ELI; = Tra r, 	T  h i  and <11 =111u2i/j +0 —)'2 b where hi  and 

6, are the annihilation operators of the vacua entering the second unused ports of the 

fictitious beam splitters. The annihilation operators a; and af, describe the light modes 

(or fields) emerging from the 50:50 beam splitter where the signal is optically mixed 
with the W. Again, the LO is an intense field compared with the signal so it can be 
treated classically. Therefore, we do some algebra to compute the difference photon 

number IL1 =11",-11': =a,fl ia 2" a- ;;± a", , but retain only the leading terms with respect to 

aLq, and obtain the final result [38]: 

h21  = rraL0  HI" a + (1 -T)'  1;1+ HC 
	

(12) 

The symbol HC in Eq. (12) denotes the Hermitian conjugate of the other part of an 

expression and b 2_ 2 (b. 41 ). The fluctuation mode operator h corresponds to the 

optical mixing of the fictitious vacuum-noise modes hi  and h„ and it obeys the bosonic 

commutation relation [h. '6'1=1 (e.g., see Sect. IIII3-2). Because the interference of 

vacuum with vacuum yields vacuum, the fluctuation mode h can be regarded as a 
bosonic mode, being in the vacuum state as well. 
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Figure 11. Balanced Homodyne Detector Using Fictitious 
Beam Splitters to Account for Detection Losses. (courtesy 
of Ulf Leonhardt) 

Equation (12) provides an additional model for detection losses. Similar to direct 
photon counting, a fictitious vacuum field has to be added to the attenuated signal in 
homodyne detection. This means that we can replace the arrangement of two fictitious 
beam splitters in front of the photodetectors with just one effective beam splitter in 
front of an ideal homodyne detector (see Figure 12). This effective beam splitter 
accounts for other kinds of losses including mode mismatch, whereby the quantum 

effects of both detection losses and mode mismatch are comprised in an effective 
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Figure 12. Balanced Homodyne Detector Using A Single Effective 
Fictitious Beam Splitter to Account for Detection Losses and 
Mode Mismatch. (courtesy of Ulf Leonhardt) 

The consequence of an effective ii  and Eq. (12) is that the marginal distributions 

pr(q,0) must become a function of the effective 0 [38] 

-1/2 j*--2  
pr(q,9 r0 = [z(1-7- )1 	pr(x,0)exp[- 114n 

 
(x- ]dx 	(13) 

where the prci 3 O) inside the integral is defined by Eq. (10) and xis a dummy 
integration variable. Equation (13) defines the measured quadrature histograms that 
are used to build the transmission profiles in the tomographic process, which is 
discussed in the following section. 

Outline of Experimental Procedure 

The key process of quantum tomography is to picture the "shape" of a quantum object 
in phase space using the Wigner representation. The marginal distributions [Eq. (10) 
or (13)] correspond to the tomographic transmission profiles of the Wigner function 
W(q,p), i.e., to shadows projected onto a line in quantum phase space. Because of the 
Heisenberg Uncertainty Principle, we cannot measure simultaneously and precisely the 
position q and the momentum p, and we cannot observe the Wigner function directly as 
a probability distribution. However, we can measure the quadrature histograms [i.e., 

the first line in Eq. (10)], and by varying the phase 0 we observe the quantum object 

under different angles. Given the pr(q,B), the mathematics of computerized 
tomography can be applied to deduce the Wigner function. 
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As discussed in the previous subsection, we can use balanced homodyne detection to 
precisely measure the quadratures 40  of a spatial-temporal mode. As was also 

discussed in the previous subsection, the angle 0 is defined by the phase of the local 

oscillator with respect to the signal. The phase 0 can be varied using a piezo-electric 

translator. To measure the quadrature distributions, one may fix 0 and perform a 
series of homodyne measurements at this particular phase to build up a quadrature 
histogram. Then the LO phase should be changed in order to repeat the procedure at a 
new phase, and so on. Another possibility is to monitor the phase while it drifts or to 
sweep it in a known way. In any case, the homodyne measurement must be repeated 
many times on identically prepared light modes (or on a continuous wave field) to gain 
sufficient statistical information about the quadrature values at a certain number of 
reference phases. Finally, the Wigner function is tomographically reconstructed from 
the experimental data. 

It is beyond the scope of this report to summarize the entire subject of experimental 
quantum tomography, its mathematical basis and procedures of quantum state 
sampling, and the corresponding algorithms and numerical recipes. The reader should 
see Reference [58] for the excruciating details. 

Balanced homodyne detectors with local oscillators are amplifiers capable of detecting 
and quantifying vacuum and sub-vacuum fluctuations. This is the subject of the two 
experimental approaches that will be discussed in the next section. 

BALANCED HOMODYNE SYSTEMS FOR MEASURING 
NEGATIVE (SUB-VACUUM) ENERGY 

Time-Domain Balanced Homodyne System 

Squeezed states of light, which are "darker than vacuum," have regions with sub-
vacuum fluctuations. Slusher and collaborators [40, 41] and Robinson [42, 43] were 
the first to experimentally observe these sub-vacuum regions. Numerous other 
experiments followed, which employed variations on the experimental devices and 
techniques used to generate squeezed light and measure its sub-vacuum fluctuation 
pulses. Those early experimental devices later gave way to the development and use 
of balanced homodyne detectors. 

For example, Schneider et al. [59] describe their compact and efficient source of 
amplitude-squeezed light. Their experiment used a semi-monolithic degenerate 
MgO:LiNb03 optical parametric amplifier pumped by a frequency-doubled Nd:YAG laser 
at 532 nm. They employed injection-seeding of the amplifier by a 1064 nm wave to 
provide active stabilization of the cavity length and stable operation. At a pump power 
of 380 mW, their device detected a maximum noise reduction of 6.5 dB in the 
amplitude fluctuations of the 0.2 mW 1064 nm wave, while the average detected noise 
reduction in continuous operation over 14 minutes was 6.2 dB. They reported a 
squeezing of 7.2 dB in the emitted wave. 

However, most of these early and more recent series of balanced homodyne detector 
(BHD) measurements have been performed in the frequency domain. A significant 
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drawback of this approach is that it reveals information about the quantum state only 
within the sideband chosen for the measurement. Therefore, the method is 
incompatible with other techniques for characterizing a quantum state for which such 
precise selection of spectral modes is impossible. Time-domain BHD resolves this 
limitation. Hansen et al. [4] describe their experimental time-domain BHD device. 
They developed a pulsed BHD for precise measurement of the electric field quadratures 
of pulsed optical quantum states. A high level of common mode suppression (> 85 dB) 
and low electronic noise (730 electrons per pulse) in their device provides a signal-to-
noise ratio of 14 dB for measurement of the quantum noise of individual pulses. Their 
device achieved a signal-to-noise ratio of 14 dB at a pulse repetition rate of up to 1 MHz, 
enabling high-accuracy quantum measurements to be carried out in a short time. They 
performed a quantum tomography of the coherent state as a test for their device, and 
the Wigner function and density matrix were reconstructed with 99.5% fidelity while 
their detector exhibited 91% quantum efficiency. Their detection system can also be 
used for ultrasensitive balanced detection in continuous wave mode. Figure 13 shows a 
schematic of their time-domain BHD. The figure shows two polarizing beam splitter 
(PBS) cubes, a 50:50 beam splitter (BS), two half-wave plates (V2), two photodiodes 
(left-side in dotted box), and the signal processing electronics inside the dotted box. 

Figure 13. Time-Domain Balanced Homodyne Detector. (courtesy of P. Lodahl) 

As we discussed previously in Sections IIIB-4 and 11113-5, to perform BHD one overlaps 
on a beam splitter the electromagnetic wave whose quantum state is to be measured 
and a relatively strong LO wave in the matching optical mode. The two fields emerging 
from the beam splitter are incident upon two high efficiency photodiodes whose output 
photocurrents are subtracted. The photocurrent difference is proportional to the value 

of the electric field operator to  in the signal mode, where 0 is the relative optical 

phase of the signal and the LO. In traditional frequency-domain BHD, one uses a 
certain frequency component of the difference signal to determine the quadrature 
quantum noise of the optical state. The measurement frequency is normally chosen to 
be approximately 5 to 10 MHz where the technical noise is minimized. Figure 14 shows 
an example of experimentally measured data for a typical (undisturbed) vacuum state 
and a squeezed vacuum state using a time-domain BHD system. 
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Figure 19. Experimentally Measured Squeezed State. (courtesy of P. 
Marecki) This graph of vacuum dB noise vs. relative optical phase angle shows 
an experimentally measured squeezed state (plot (I)) and a normal 
(undisturbed) vacuum state (plot (II)). The deep valleys with negative dB 
values in plot (I) are sub-vacuum regions with sub-vacuum (negative) energy 
density (see also, Figure 1 for a comparison). 

When applied to pulsed sources, the frequency-domain BHD technique implies that 
averaging over many individual laser pulses takes place. However, in time-domain BHD, 
each laser pulse generates a signal that is observed in real time and yields a single 
value of a field quadrature. Repeated measurements of a large number of laser pulses 
produce a quantum probability distribution associated with this quadrature. When 
transform-limited LO pulses are used, time-domain BHD gives the complete information 
about the quantum state in the spatial-temporal mode that matches that of the LO. 

Hansen et al. [4] point out that time-domain BHD is technically challenging, because 1) 
the electronics must ensure time resolution of individual laser pulses and 2) the 
measured quadrature values must not be influenced by low-frequency noise. The 
detector must provide ultralow noise, high subtraction, and a flat amplification profile in 
the entire frequency range from DC to at least the LO pulse repetition rate. See 
Reference [4] for a complete description of their device as shown in Figure 13. 
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Balanced Homodyne System for Casimir Cavities 

What has not been experimentally measured yet are the sub-vacuum fluctuations and 
their (negative) energy density inside a Casimir cavity. Marecki [5, 6] theoretically 
evaluated the use of BHDs for this purpose. He proposed that a BHD can be used to 
detect and spatially map the sub-vacuum fluctuation region inside a Casimir cavity as 
well as measure its negative energy density spectrum. Marecki discovered that by 
exploiting a trick with the subtraction of the output of balanced photodiodes, it is 
possible to quantify the fluctuations of the quantum field (even in the vacuum!), which 
uniquely addresses Davies and Ottewill's [54] negative energy detector hypothesis. 

The quantity of interest (to be measured) is the fluctuations of the quantum electric 

field KETx,OE_Tx,t))
s 

(for fields restricted to the frequency (i) of the local oscillator) 

A r 
for squeezed and vacuum states, where E(Lt) is the quantum electric field operator 

(in ground-state representation and restricted in frequencies) at the point x , t 
r 

represents the time-dependence of E(x,t), and (...)s stands for the expectation value 

with respect to an arbitrary initial state S (vacuum, squeezed, ground state, coherent, 
ir , ir 

thermal, etc.) of the quantum radiation field under study. KE,(x,t)E tx,t))
s 

is also 

called a two-point function. In quantum field theory, the expectation value (or matrix 
element) computed by inserting a product of two quantum operators between two 
states, usually the vacuum states, is called a two-point function. This quantity 
suggests a "relation" between two states in the same dynamics, and it expresses the 
fluctuations of a quantum field. The product of n-operators is called the n-point 
function which expresses the higher moments of the quantum field fluctuations. 

The goal of the experiment is that a state S of the quantum radiation field under study 
needs to be characterized by its n-point functions. The typical solution in quantum 
optics is to use well-characterized quantum systems interacting in a simple way with 
the quantum radiation field. The detection scheme uses the simple model of a PIN 
junction photodiode in which a single electron interacts with the quantum radiation field 
under study. This simple interaction means that the state space of the electron can be 
severely restricted, the interaction is assumed to be linear in the quantum field, and so 
the Born approximation can be used [5, 6]. The PIN junction model of the 

photodetection process is an electron in an initial state 10)0S , with its bound-state (3) 

well-localized around a certain point Ak'„ , that gets excited to the continuum of 

scattering states q) by the quantum field state of interest S such that the final states 

of the system are q) ,0 S .**** The excitation is caused by the linear (dipole 

approximation) interaction with the quantum electric field which is 

'flit  The symbol M denotes the tensor product of two quantum eigenstates such that l am af)=lai)CHaf) for 
factorized eigenstates which correspond to independent measurements. 
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clip—mt 	- = ex ®E,(x,t) • g(t) where e is the electron charge and g(t) is a smooth test 

(or smearing) function that is equal to 1 during the measurement and smoothly 
vanishing elsewhere. Using first-order time-dependent perturbation theory, Marecki [5, 
6] derived the probability of excitation: 

+x 
P 	(g 1;)= 	dr ds g(r)g(s)Gu (2-  — s) 	 , 	(14) exc 

S 

where (Mr -s) fdq(01x'(r) 121)(1 
	

0) is the electronic two-point function, r and 

s are dummy time and integration variables, and trIrds g(r)g(s) is the temporal 

sensitivity in the measurement process. 

The balanced homodyne detector consists of an arrangement of two photodiodes, 
whose outputs are subtracted, and illuminated with an auxiliary coherent state of the 
radiation field (i.e., the local oscillator, LO; see Figure 15). Per the discussion in 
Section IIIB-4, the LO is used as a tool to investigate the properties of a certain state S 
of the quantum radiation field under study, and so on a BHD the state S is optically 
mixed with the coherent LO state (see References [5] or [6] for further details). The 
quantum field S de-balances the detector (stochastic process of measurement). The 
expectation value of the observable corresponding to the electronic charge collected at 
the point P in Figure 15 (i.e., the BHD current) is the difference of excitation 
probabilities of the two photodiodes [5, 6]: (J)s  = Pe„,(g,x)- Pe„(g, y), where positions 

	

and 	correspond to the positions x and y in Figure 15. Further calculations and 

other theoretical considerations lead to the following final result for (J)5  [5, 6]: 

	

(J).5. = 	r,EL0  • ( EJ.IY,t„)+E.,(Lt„)) where cc& depends on the electronic structure 

of the PIN semiconductor in the photodiode, EL)  is the electric field of the LO 

(corresponding to F in Figure 15), to is the LO phase that can easily be varied in 
- 

experiments, and all field operators E,(x,t) are restricted to the frequency co of the LO. 
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Figure 15. Balanced Homodyne Detector with a Local Oscillator. (courtesy of P. 
Marecki) The setup is arranged so that the electric field F of the LO at position X has a 
reversed direction with respect to that at position y . 

If ./),] vanishes, then the variance of the BHD-output is (j') which provides a 

characterization of the two-point function of the state S. The variance is [5, 6]: 

/j2\ El -1E,(4)- E,(1-',01[E,(1,4))+ Ei ( j),t0)) , 	(15) \ is  —et LO LO 

where ELO ELO ' is the power of the LO field. This expression shows that (J 2 ) scales 

quadratically with the amplitude of the electric field of the quantum state S under study 
and thus linearly with the power of the LO field. The two-point functions can be 
quantitatively estimated by performing measurements with different powers of the LO. 
Therefore, BHDs with local oscillators are amplifiers that are capable of measuring the 
one- and two-point functions of arbitrary states of quantum fields (even for the 
vacuum). 

For an experimental study of the vacuum state inside a Casimir cavity, the stationary 

state is specified to be the ground state (Grd) and thus the one-point function (.1)S=Cird 
vanishes. 

	

	For stationary states the (j2) G/ is related to the spectral density 

which is defined as the Fourier transform of the two-point function 

with respect to time; therefore, we have for ground states [5, 6]: 

(12 Gd ) 	el 	2  r =a
2 (E

LO 
 fd g(61,9-(0) 2 	 (16) 
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where k (04 is the Fourier transform of g(t) and is sharply peaked around co = 0. In 

general, almost all results of quantum field theory in a vacuum state or under the 
influence of external conditions (i.e., in vacuum states "deformed" by boundary 
conditions or external fields) are derivable from the spectral density. This quantity is 
usually known analytically, and it is of great interest to measure it for interesting 
quantum field states. 

Because the ground state is stationary, the quantum noise in the Casimir cavity is time-
independent, i.e., it is independent of the phase of the LO, and thus the spectral 
density is also time-independent. Marecki [5, 6] derived the diagonal part of the 
spectral density for the y-components of the quantum electric field between two 
parallel, perfectly conducting plates (positioned at x = 0 and v = a) in a Casimir cavity 
(see Figure 2): 

r r 	w3 +xi 
G (a), V X) — 	rQ(conL)—Q(col2x—nL1)1 	 (17) 

4Th2  

for y = 0, where L =2a is twice the distance between the plates and the function Q(x) is 
defined as 

sinx cosx smx 
Q(x)— 

x- 

Note that the diagonal terms of the spectral density are the important quantities to be 
measured because they will be dominant if the photodiodes are separated by a 
sufficiently large distance [5, 6]. Spectral densities reveal much finer details of the 
quantum ground state than already-measured Casimir forces do. By exploring the 
freedom of choosing the locations of the photodiodes inside the Casimir cavity as well 
as the polarizations, phases and frequencies of the LO, one can obtain a detailed 
characterization of one- and two-point functions of any state S of the quantum electric 
field. Therefore, an application of this particular type of BHD measurement, via 
Equations (16) and (17), amounts to a tomography of the ground state of the Casimir 
cavity. 

For the experimental detection of the Casimir spectral density with a BHD-type device, 
the Casimir cavity plates are separated by a = 1 micrometers while the photodiodes 
inside it are of submicrometer width in the x-direction and submillimeter length in the 
y-direction (see Figure 16). Photodiodes of several nanometers in size have already 
been constructed and their high quantum efficiency versions are under development, 
see Reference [60] and the references cited therein for more technical information. As 
shown in Figure 16, a coherent state in the TEl mode of the Casimir cavity with a very 
small wavenumber in the y-direction provides an appropriate LO. A BHD with such a 
LO and the photodiodes located as shown in Figure 17 would be sensitive only to the y-
component of the quantum electric field. Figure 18 shows a schematic of the BHD 
apparatus with a LO. In the figure, the linearly polarized signal field S (if present) is 

optically mixed with a coherent state (L0), which is polarized orthogonally to S, on the 
polarizing beam splitter (PBS1). The half wave plate (HWP) reflects the planes of 
polarization with respect to its optical axis, thereby inducing a it/4 shift of the plane of 
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polarization of the signal field S. The subsequent PBS2 separates the two orthogonally 
polarized signals, which are detected at the photodiodes PDx and PDy. The charge 
collected at point V (corresponding to point P in Figure 15) provides a measure of 

(J) 	(and its higher moments). Note that the setup is arranged in such a way, that if Gid 

S happened to be a monochromatic coherent state, then it would be phase-matched to 
the LO at the point x, but shifted in phase by TC at the pointy. 

Figure 19 displays Marecki's computer model plot of the predicted Casimir spectral 
density as a function of the distance from the plates x and the frequency co. For a 
comparison with quantum optics literature, he plotted the normalized difference 
between the vacuum and ground state spectral density in the figure (see References [5] 
and [6] for more detail). Note in the figure that for (o< iitCja, the Casimir spectral 
density vanishes: cy(o),x,1). 0 , while discontinuities in it appear at w=nizcla. 

Figure 20 displays the corresponding computer model plot by Marecki of the predicted 
"suppressed" vacuum fluctuations in the ground state relative to "undisturbed" vacuum 

fluctuations (in absence of the plates) in dB, 10Log10  [ 	(w.1.1)/Qa (w, 1)1 . 

lmrn 	y-Direction 

TEl Coherent field (Local Oscillator) 

Figure 16. Diagram of Casimir Cavity with BHD Photodiodes. (courtesy of P. 
Marecki) 

Side view: 

Figure 17. Experimental Setup of BHD Photodiodes and LO Field. (courtesy of P. 
Marecki) This setup is drawn on the plot of the y-component of the electric field of the 
TEl mode of the Casimir cavity. The mode, serving as the LO, propagates in the z-
direction perpendicular to the plot. 
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Figure 18. Detailed Schematic of Experimental BHD Apparatus. (courtesy of P. 
Marecki) Note that point V corresponds to point Pin Figure 15. 
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Figure 19. Predicted Casimir Spectral Density Gyy. 

(courtesy of P. Marecki) oyy is related to the expected output of 
a BHD with the LO polarized along the y-direction (parallel to 
the plates) for the ground state in the Casimir cavity. This is 
plotted as a function of the position x G [0, a] between the 
plates (separation a = 1 prrl is assumed) and the frequency (0 G 
[0, 47c/a]. Negative values (suppression of fluctuations) are 
shown in deep purple. 
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Figure 20. Predicted Suppression of Vacuum Fluctuations in dB. (courtesy 
of P. Marecki) Vacuum fluctuations in the ground state (for field operators 
restricted to the frequency o) relative to vacuum fluctuations cm the absence of 
the plates) for a BHD at x = 0.25 pm (solid line) and x = 0.5 pill (dashed line) 
within the cavity. The frequency range is o e [0, LITM/a]. 

The predicted spectral density pattern shown in Figure 19 is static, i.e., it is 
independent of the LO phase and in some regions corresponds to the suppression of 
vacuum fluctuations by at least 3 dB. Such a behavior is allegedly forbidden by a 
theorem known as the Quantum Inequalities for quantum fields without external 
conditions (i.e., "undeformed," or "undisturbed," vacuum states). The theorem states 
that regions with sub-vacuum fluctuations must be followed by regions with greatly 
increased vacuum fluctuations no matter what the state of the quantum field is. This 
has only been verified for single-mode squeezed light, see, e.g., Figures 1 and 14. A 
major consequence of this theorem is that sub-vacuum fluctuations, and their 
corresponding sub-vacuum (negative) energy density, cannot persist for long times. 
What is surprising here is that Marecki (private communication, Leipzig University, 
Germany, 2010) claims that the Quantum Inequalities should also apply to the case of 
static sub-vacuum fluctuations, and their corresponding static sub-vacuum (negative) 
energy density, inside Casimir cavities. The efficacy of the Quantum Inequalities 
theorem in its application to curved spacetime physics, and more specifically faster-
than-light spacetime geometries, has been argued in the literature in which serious 
theoretical shortcomings of the theorem have been identified by several investigators 
(see Reference [1] for the details). Therefore Marecki's proposed Casimir cavity BHD 
experiment provides a possible test of yet unexplored generic quantum field theoretic 
effects in Casimir geometries, complementary to measurements of Casimir forces. We 
hope that experimental attempts to verify his predictions will follow. 
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CONCLUSION 

Future aerospace platforms may have propulsion systems that modify their surrounding 
spacetime geometry to implement faster-than-light spaceflight (via traversable 
wormholes or warp drives) or produce levitation via antigravity. To engineer such a 
modification of local spacetime requires the use of quantum sub-vacuum fluctuations 
and their associated sub-vacuum (or negative) energy density. There are two key 
examples of specially prepared quantum vacuum states that are known to produce 
small amounts of sub-vacuum (negative) energy density in the laboratory. These are 
the well-known Casimir effect and squeezed light. There are several other examples of 
special quantum vacuum states or particle states that produce sub-vacuum (negative) 
energy density, but they are still under theoretical study. 

We already make small amounts of sub-vacuum (negative) energy in the laboratory via 
the Casimir effect and squeezed light, but we do not yet know if we can access larger 
amounts for extended periods of time over extended spatial distributions. The 
Quantum Inequalities theorem suggests that producing large amounts of sub-vacuum 
(negative) energy in "deformed" vacuum states for extended periods of time in flat or 
curved spacetimes may not be possible. This claim remains as yet untested by 
experiment while several investigators have strong arguments showing the theorem is 
in error in these particular cases. 

Quantum optical homodyne tomography can detect and quantify the fluctuations in a 
variety of ("undisturbed") vacua as well as the sub-vacuum fluctuations found in both 
squeezed light and Casimir cavities. Squeezed light has time-dependent, alternating 
regions of sub-vacuum fluctuations (a.k.a. two-point functions) of the quantum electric 
field. Casimir geometries provide environments with non-trivial position- and 
frequency-dependent, time-independent, often sub-vacuum fluctuations (two-point 
functions) of the quantum electric field. Balanced homodyne detectors (BHD) with local 
oscillators are amplifiers that are capable of providing detailed measurements of the 
sub-vacuum fluctuations (the two- and n-point functions) of the states of the quantum 
electromagnetic field. 

Nearly a decade ago, Hansen et al. [4] reported on their experimental time-domain (or 
pulsed) BHD device that they developed to make precise measurements of the quantum 
electric field quadratures of pulsed optical quantum states (e.g., squeezed light). A 
master laser produced the local oscillator for this device. The device demonstrated a 
high level of common mode suppression and low electronic noise, which provided large 
enough signal-to-noise ratio to measure the quantum noise of individual pulses. The 
device exhibited over 90% quantum efficiency. However, their device was not designed 
to directly measure the energy density of the individual pulses. We recommend that a 
research and development program be implemented to modify the design and operation 
of the time-domain BHD device in order provide this important data. It will be 
necessary to develop and commercialize a portable time-domain BHD device for the 
purpose of detecting, measuring, and spatially mapping the sub-vacuum (negative) 
energy regions produced by a putative pulsed (or "AC") negative energy generator that 
might be used for engineering the spacetime surrounding an aerospace platform for 
propulsion purposes. A number of modified time-domain BHD devices could also be 
assembled in a sensor array for surveillance and detection of any anomalous aerospace 
platforms that might use engineered spacetime effects for propulsion. 
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What has not been experimentally measured yet are the sub-vacuum fluctuations and 
their corresponding sub-vacuum (negative) energy density inside a Casimir cavity. 
Casimir cavities produce static, or time-independent, sub-vacuum fluctuations and 
(negative) energy density. Marecki [5, 6] proposed a modified BHD and computed the 
two-point function and the associated spectral density for the ground state of the 
quantum electric field in Casimir geometries, and predicted a position- and frequency-
dependent pattern of BHD responses if a device of this type is placed inside a Casimir 
cavity. He discovered that by exploiting a trick with the subtraction of the output of 
two balanced photodiodes, it is possible to quantify and map the sub-vacuum 
fluctuations of the quantum field and its corresponding energy density inside the cavity. 
His modified BHD design uses the electric field of the TEl mode of the Casimir cavity as 
the local oscillator. Marecki also discovered that the sub-vacuum (negative) energy 
density regions inside a Casimir cavity violate the Quantum Inequalities theorem. We 
recommend that an experimental program be implemented to test Marecki's modified 
BHD and his predictions for Casimir geometries. Using this device to also test the 
efficacy of the Quantum Inequalities theorem is a necessary part of the proposed 
experimental program. If such experiments are successful, then it will be necessary to 
follow up by implementing a program to develop and commercialize a portable 
"modified-Marecki BHD" device for the purpose of detecting, measuring, and spatially 
mapping the sub-vacuum (negative) energy regions produced by a putative static (or 
"DC") negative energy generator that would be used for engineering the spacetime 
surrounding an aerospace platform for propulsion purposes. Because the Casimir effect 
and its associated negative energy are incredibly feeble, such putative propulsion 
systems will not involve the use of Casimir cavities to produce a free-space distribution 
of negative energy surrounding the platform. Therefore, a modified-Marecki BHD will 
require a high quality laser for the local oscillator and the photodiodes are allowed to be 
much larger in size. A number of modified-Marecki BHD devices could also be 
assembled in a sensor array for surveillance and detection of any anomalous aerospace 
platforms that might use engineered spacetime effects for propulsion. 
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