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An Introduction to the Statistical Drake Equation

1. Introduction

SETI (an acronym for “Search for Extraterrestrial Intelligence”) is a relatively
new branch of scientific research, having begun only in 1959, Its goal is to
ascertain whether alien civilizations exist in the universe, how far from us
they exist, and possibly how much more advanced than us they may be.

As of 2009, the only physical tools we know that could help us get in touch
with aliens are the electromagnetic waves an alien civilization could emit and
we could detect. This forces us to use the largest radiotelescopes on Earth for
SETI research, because the higher our collecting area of electromagnetic
radiation is, the higher our sensitivity is (that is, the farther in space we can
procbe). Yet, even by using the largest radiotelescopes on Earth (the 310-meter
dish at Arecibo, for instance), we cannot search for aliens beyond, say, a few
hundred light years away. This is a very, very small amount of space around us
within our galaxy, the Milky Way, that is about 100,000 light years in diameter.
Thus, current SETI can cover only a very tiny fraction of the galaxy, and it is
not surprising that in the past 50 years of SETI searches, NO extraterrestrial
civilization was discovered. Quite simply, we did not get far encugh!

This demands the construction of much more powerful and radically new
radiotelescopes. Rather than big and heavy metal dishes, whose mechanical
problems hamper SETI research too much, we are now turning to “software
radiotelescopes,” where a large number of small dishes (ATA = Allen
Telescope Array, and ALMA = Atacama Large Millimeter/submillimeter Array)
or even just of simple dipoles {LOFAR = Low Frequency Array) using state-of-
the-art electronics and very-high-speed computing can outperform the
classical radiotelescopes in many regards. The final dream in this field is the
SKA (= Square Kilometer Array), currently being designed and expected to be
completed around 2020,

2. The Key Question: How Far are They ?
But still, the key question remains: how far are they?

Or, more correctly, how far do we expect the NEAREST extraterrestrial civilization to be
from the Solar System in the galaxy?

This question was first faced in a scientific manner back in 1961 by the same scientist
who also was the first experimental SETI radio astronomer ever: the American, Frank
Donald Drake (born 1830). He first considered the shape and size of the galaxy where
we are living: the Milky Way. This is a spiral galaxy measuring some 100,000 light
years in diameter and some 16,000 light years in thickness of the Galactic Disk at half-
way from its center. That is:

The diameter of the galaxy is {about) 100,000 light years, (abbreviated ly) i.e., its
radius, Rg,... 15 about 50,000 ly.
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The thickness of the Galactic Disk at half-way from its center, # is about 16,000 ly.

Crorderxy
The volume of the galaxy may then be approximated as the volume of the
corresponding cylinder, i.e.

)
V(.anfra.\;r = E—R(_;mr““ . ( 1)

Now consider the sphere around us having a radius r. The volume of such a sphere is
(2)

. . 3
, 4 ( ET_Distance
¥ thir_Sphere — :‘ 4 f

In the last equation, we had to divide the distance “ET_Distance” between ourselves
and the nearest ET civilization by 2 because we are now going to make the
unwarranted assumption that all ET civilizations are equally spaced from each
other in the galaxy! This is a crazy assumption, clearly, and should be replaced by
more scientifically-grounded assumptions as soon as we know more about our Galactic
Neighborhood. At the moment, however, this is the best guess that we can make, and
s0 we shall take it for granted, although we are aware that this is a weak point in the
reasoning.

Furthermore, let us denote by N the total number of civilizations now living in the
galaxy, including ourselves. Of course, this number N is unknown. We only know that
N =1 since one civilization does at least exist!

Having thus assumed that ET civilizations are UNIFORMLY SPACED IN THE GALAXY, we
can then write down the proportion:

V(fmf.ﬂ e V()ru'_ Spfere ( 3 )

N 1
That is, upon replacing both (1) and (2) into (3):

4 ( ET_Distance
'?rRC_:‘uha.i_\'h 3 ’ 2 J

N 1 ' (4)

The last equation contains two unknowns: N and ET_Distance, and so we don’t know
which one it is better to solve for.

However, we may suppose that, by resorting to the (rather uncertain) knowledge that
we have about the Evolution of the galaxy through the last 10 billion years or so, we
might somehow compute an approximate value for A.

Then, we may solve (4) for ET_Distance thus obtaining the (AVERAGE) DISTANCE
BETWEEN ANY PAIR OF NEIGHBORING CIVILIZATIONS IN THE GALAXY (DISTANCE
LAW)
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ET_DistanceiN)y=————=——

W W
where the positive constant C is defined by
C =4 6 szirf.l’cr.\_\' h(}'ﬂ feny = 28845 hght yeal*.-; . (6)

Equations (5) and (6) are the starting point to understand the origin of the Drake
equation that we discuss in detail in Section 3 of this paper.

Let us just complete this section by pointing out three different numerical cases of the
distance law (5):

« We know that we exist, so /¥ may not be smaller than 1, i.e., ¥ =1. Suppose then
that we are alone in the galaxy, i.e., that #=1. Then the distance law (5) vields as
distance to the nearest civilization from us just the constant C, i.e., 28,845 light
years. This is about the distance in between ourselves and the center of the galaxy
(i.e. the Galactic Bulge). Thus, this result seems to suggest that, if we do not find
any extraterrestrial civilization around us in these outskirts of the galaxy where we
live, we should look around the Galactic Center first. And this is indeed what is
happening, i.e., many SETI searches are actually pointing the antennas towards the
Galactic Center, looking for beacons (see, for instance ref. [1]).

« Suppose next that NA=1000, i.e. there are about a thousand extraterrestrial
communicating civilizations in the whole galaxy right now. Then the distance law (5)
yields an average distance of 2,885 light years. This is a distance that most
radiotelescopes in Earth may not reach for SETI searches right now: hence the need
to build larger radiotelescopes, like ALMA, LOFAR and the SKA.

¢ Suppose finally that N=1000000, i.e., there are a million communicating civilizations
now in the galaxy. Then the distance law (5) yields an average distance of 288 light
years. This is within the (upper) range of distances that our current radiotelescopes
may reach for SETI searches, and that justifies all SETI searches that have been
done so far in the first fifty years of SETI (1960-2010).

In conclusion, interpolating the above three special cases of N, we may say that the
distance law (5) yields the following key diagram of the average ET distance vs. the
assumed number of communicating civilizations, #, in the galaxy right now (Figure 1):
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Figure 1. DISTANCE LAW; i.e., the Average Distance (plot along the vertical axis in light years) Versus
the NUMBER of Communicating Civilizations ASSUMED to Exist in the Galaxy Right Now

3. Computing N By Virtue of the Drake Equation (1961)

In the previous section, the problem of finding how close the nearest ET civilization may
be was “solved” by reducing it to the computation of N, the total number of
extraterrestrial civilizations now existing in this galaxy. In this section the famous
Drake equation is described, that was proposed back in 1961 by Frank Donald Drake
(born 1930) to estimate the numerical value of N. We believe that no better
introductory description of the Drake equations exists other than the one given by Carl
Sagan in his 1983 book “"Cosmos” (ref. [2])}, in its turn based on the famous TV series
“Cosmos.” So, in this paragraph we report Carl Sagan’s description of the Drake
equation unabridged.

“"But is there anyone out there to talk to? With a third or a half a trillion stars in our
Milky Way galaxy alone, could ours be the only one accompanied by an inhabited
planet? How much more likely it is that technical civilizations are a cosmic
commonplace, that the galaxy is pulsing and humming with advanced societies, and,
therefore, that the nearest such culture is not so very far away — perhaps transmitting
from antennas established on a planet of a naked-eye star just next door. Perhaps
when we look up at the sky at night, near one of those faint pinpoints of light is a world
on which someone quite different from us is then glancing idly at a star we call the Sun
and entertaining, for just a moment, an outrageous speculation.

UNCLASSIFIED/ / Rkl i



UNCLASSIFIED / /4uiGRaGiuinkiinivimld i il

It is very hard to be sure, There may be several impediments to the evolution of a
technical civilization. Planets may be rarer than we think. Perhaps the origin of life is
not so easy as our laboratory experiments suggest. Perhaps the evolution of advanced
life forms is improbable. Or it may be that complex life forms evolve more readily, but
intelligence and technical societies require an unlikely set of coincidences - just as the
evolution of the human species depended on the demise of the dinosaurs and the ice-
age recession of the forests in whose trees our ancestors screeched and dimly
wondered. Or perhaps civilizations arise repeatedly, inexorably, on innumerable planets
in the Milky Way, but are generally unstable; so all but a tiny fraction are unable to
survive their technology and succumb to greed and ignorance, pollution and nuclear
war.

It is possible to explore this great issue further and make a crude estimate of N, the
number of advanced civilizations in the galaxy. We define an advanced civilization as
one capable of radio astronomy. This is, of course, a parochial if essential definition.
There may be countless worlds on which the inhabitants are accomplished linguists or
superb poets but indifferent radio astronomers. We will not hear from them. N can be
written as the product or multiplication of a number of factors, each a kind of filter,
every one of which must be sizable for there to be a large number of civilizations:

e Ns, the number of stars in the Milky Way galaxy.

« fp, the fraction of stars that have planetary systems.

e ne, the number of planets in a given system that are ecologically suitable for life.
« fl, the fraction of otherwise suitable planets on which life actually arises.

e fi, the fraction of inhabited planets on which an intelligent form of life evolves.

« fc, the fraction of planets inhabited by intelligent beings on which a communicative
technical civilization develops.

« flL, the fraction of planetary lifetime graced by a technical civilization.
Written out, the equation reads

N=Ns-fir-ne- fl-fi-fo-fL (7)

All of the f's are fractions, having values between 0 and 1; they will pare down the
large value of Ns,

To derive N we must estimate each of these quantities. We know a fair amount about
the early factors in the equation, the number of stars and planetary systems. We know
very little about the later factors, concerning the evolution of intelligence or the lifetime
of technical societies. In these cases our estimates will be little better than guesses. 1
invite you, if you disagree with my estimates below, make your own choices and see
what implications your alternative suggestions have for the number of advanced
civilizations in the galaxy. One of the great virtues of this equation, due to Frank Drake
of Cornell, is that it involves subjects ranging from stellar and planetary astronomy to
organic chemistry, evolutionary biology, history, politics and abnormal psychology.
Much of the Cosmos is in the span of the Drake equation.

8
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We know Ns, the number of stars in the Milky Way galaxy, fairly well, by careful counts
of stars in a small but representative region of the sky. It is a few hundred billion; some
recent estimates place it at 4 x 101!, Very few of these stars are of the massive short-
lived variety that squander their reserves of thermonuclear fuel. The great majority
have lifetimes of billions or more years in which they are shining stably, providing a
suitable energy source for the energy and evolution of life on nearby planets.

There is evidence that planets are a frequent accompaniment of star formation: in the
satellite systems of Jupiter, Saturn and Uranus, which are like miniature solar systems;
in theories of the origin of the planets; in studies of double stars; in observations of
accretion disks around stars; and is some preliminary investigations of gravitational
perturbations of nearby stars.! Many, perhaps even most, stars may have planets. We
take the fraction of stars that have planets, fp, as roughly equal to 1/3. Then the total
number of planetary systems in the galaxy would be Ns fp ~ 1.3 x 10! (the symbol ~
means "approximately equal to”). If each system were to have about ten planets, as
ours does, the total number of worlds in the galaxy would be more than a trillion, a vast
arena for the cosmic drama.

In our own solar system there are several bodies that may be suitable for life of some
sort: the Earth certainly, and perhaps Mars, Titan and Jupiter. Once life originates, it
tends to be very adaptable and tenacious. There must be many different environments
suitable for life in a given planetary system. But conservatively we choose ne=2. Then
the number of planets in the galaxy suitable for life becomes Ns fp ne ~ 3 x 1011,

Experiments show that under the most common cosmic conditions the molecular basis
of life is readily made, the building blocks of molecules able to make copies of
themselves. We are now on less certain grounds; there may, for example, be
impediments in the evolution of the genetic code, although I think this is unlikely over
billions of years of primeval chemistry. We choose f/ ~ 1/3, implying a total number of
planets in the Milky Way on which life has arisen at least once as Ns fp ne fl ~ 1 x 1011,
a hundred billion inhabited worlds. That in itself is a remarkable conclusion. But we are
not vet finished.

The choices of ff and fc are more difficult. On the one hand, many individually unlikely
steps had to occur in biological evolution and human history for our present intelligence
and technology to develop. On the other hand, there must be quite different pathways
to an advanced civilization of specified capabilities. Considering the apparent difficulty
in the evolution of large organisms, represented by the Cambrian explosion, let us
choose fi x fc = 1/100, meaning that only 1 per cent of planets on which life arises
actually produce a technical civilization. This estimate represents some middle ground
among the varying scientific options. Some think that the equivalent of the step from
the emergence of trilobites to the domestication of fire goes like a shot in all planetary
systems; others think that, even given ten or fifteen billion years, the evolution of a
technical civilization is unlikely. This is not a subject on which we can do much
experimentation as long as our investigations are limited to a single planet. Multiplying

' Carl Sagan was writings these lines back in the 1970's, when no extrasolar planets had been discovered yet. The
first such discovery occurred in 1995, when Michel Mayor and Didier Queloz, working at the *Observatoire de Haute
Provence” in France, discovered the first extrasolar planet orbiting the nearby star 51 Peg. This first extrasolar
planet was hence named 51 Peg B. Many more extrasolar planets were discovered around nearby stars ever since.
As of April 2009, 347 extrasolar planets (exoplanets) are listed in the Extrasolar Planets Encyclopaedia.
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these factors together, we find Ns fp ne fl fi fc ~ 1 x 109, a billion planets on which
technical civilizations have arisen at least once. But that is very different from saying
that there are a billion planets on which technical civilizations now exist. For this we
must also estimate fL.

What percentage of the lifetime of a planet is marked by a technical civilization? The
Earth has harbored a technical civilization characterized by radio astronomy for only a
few decades out of a lifetime of a few billion years. So far, then, for our planet fL is less
than 1/108, a millionth of a percent. And it is hardly out of the question that we might
destroy ourselves tomorrow. Suppose this were a typical case, and the destruction so
complete that no other technical civilization - of the human or any other species - were
able to emerge in the five or so billion years remaining before the Sun dies. Then Ns fp
nefl fifc fL ~ 10, and, at a given time there would be only a tiny smattering, a handful,
a pitiful few technical civilizations in the galaxy, the steady state number maintained as
emerging societies replace those recently self-immolated. The number & might be even
as small as 1 if civilizations tend to destroy themselves socon after reaching a
technological phase; there might be no one for us to talk with but ocurselves. And that
we do but poorly. Civilizations would take billions of years of tortuous evolution, and
then snuff themselves out in an instant of unforgivable neglect.

But consider the alternative, the prospect that at least some civilizations learn to live
with technology; that the contradictions posed by the vagaries of past brain evolution
are consciously resolved and do not lead to self destruction; or that, even if major
disturbances occur, they are reveres in the subsequent billions of years of biclogical
evolution. Such societies might live to a prosperous old age, their lifetimes measured
perhaps on geological or stellar evolutionary time scales. If 1 percent of civilizations can
survive technological adolescence, take the proper fork at this critical historical branch
point and achieve maturity, then fL ~ 1/100, N ~ 107, and the number of extant
civilizations in the galaxy is in the millions. Thus, for all our concern about the possible
unreliability of our estimates of the early factors in the Drake equation, which involve
astronomy, organic chemistry and evolutionary biology, the principal uncertainty comes
to economics and politics and what, on Earth, we call human nature. It seems fairly
clear that if self-destruction is not the overwhelmingly preponderant fate of galactic
civilizations, then the sky is softly humming with messages from the stars.

These estimates are stirring. They suggest that the receipt of a message from space is,
even before we decode it, a profoundly hopeful sign. It means that someone has
learned to live with high technology; that it is possible to survive technological
adolescence. This alone, quite apart from the contents of the message, provides a
powerful justification for the search for other civilizations.

4. The Drake Equation is Over-Simplified

In the nearly fifty years (1961-2009) elapsed since Frank Drake proposed his equation,
a number of scientists and writers tried to find out which numerical values of its seven
independent variables are more realistic in agreement with our present-day knowledge.
Thus there is a considerable amount of literature about the Drake equation nowadays,
and, as one can easily imagine, the results obtained by the various authors largely
differ from one another. In other words, the value of N, that various authors obtained
by different assumptions about the astronomy, the biology and the sociclogy implied by
the Drake equation, may range from a few tens (in the pessimist’s view) to some

10
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million or even billions in the optimist’s opinion. A lot of uncertainty is thus affecting our
knowledge of N as of 2010. In all cases, however, the final result about N has always
been a sheer number, i.e., a positive integer number ranging frem 1 to millions or
billions. This is precisely the aspect of the Drake equation that this author regarded as
“too simplistic” and improved mathematically in his paper #1AC-08-A4.1.4, entitled
“The Statistical Drake Equation” and presented on October 1%, 2008, at the 53t
International Astronautical Congress (IAC) held in Glasgow, Scotland, UK, September
29" thru October 3, 2008. That paper is attached herewith as Appendix B. Newcomers
to SETI and to the Drake equation, however, may find that paper too difficult to be
understood mathematically at a first reading. Thus, I shall now explain the content of
that paper “by speaking easily.” I thank the reader for his or her attention.

5. The Statistical Drake Equation
We start by an example.

Consider the first independent variable in the Drake equation (7), i.e., Ns, the number
of stars in the Milky Way galaxy. Astronomers tell us that approximately there should
be about 350 millions stars in the galaxy. Of course, nobody has counted (or even seen
in the photographic plates) aff the stars in the galaxy! There are too many practical
difficulties preventing us from doing so: just to name one, the dust clouds that don’t
allow us to see even the Galactic Bulge (i.e. the central region of the galaxy) in the
visible light {although we may “see it” at radio frequencies like the famous neutral
hydrogen line at 1420 MHz). So, it doesn’t make any sense to say that A/s = 350 x 1068,
or, say (even worse) that the number of stars in the galaxy is (say) 354,233,321, or
similar fanciful exact integer numbers. That is just silly and non-scientific. Much more
scientific, on the contrary, is to say that the number of stars in the galaxy is 350 million
plus or minus, say, 50 millions {or whatever values the astronomers may regard as
more appropriate, since this is just an example to let the reader understand the
difficulty).

Thus, it makes sense to REPLACE each of the seven independent variables in the Drake
equation (7) by a MEAN VALUE (350 millions, in the above example) PLUS OR MINUS A
CERTAIN STANDARD DEVIATION (50 millions, in the above example).

By doing so, we have made a great step ahead: we have abandoned the too-simplistic
equation (7) and replaced it by something more sophisticated and scientifically more
serious: the STATISTICAL Drake equation. In other words, we have transformed the
classical and simplistic Drake equation (7) into an advanced statistical tool for the
investigation of a host of facts hardly known to us in detail. In other words still:

= We replace each independent variable in (7) by a RANDOM VARIABLE, labeled
D, (from Drake).

« We assume that the MEAN VALUE of each D, is the same numerical value previously
attributed to the corresponding independent variable in (7).

¢ But now we also ADD A STANDARD DEVIATION &,, on each side of the mean value,

that is provided by the knowledge gathered by scientists in each discipline
encompassed by each b, .

11
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Having so done, the next question is:

How can we find out the PROBABILITY DISTRIBUTION for each D,?

Far instance, shall that be a Gaussian, or what?

This is a difficult question, for nobody knows, for instance, the probability distribution of
the number of stars in the galaxy, not to mention the probability distribution of the
other six variables in the Drake equation (7).

There is a brilliant way to get around this difficulty, though.

We start by excluding the Gaussian because each variable in the Drake equation is a
POSITIVE (or, more precisely, a non-negative) random variable, while the Gaussian
applies to REAL random variables only. So, the Gaussian is out. Then, one might
consider the large class of well-studied and positive probability densities called “the
gamma distributions,” but it is then unclear why one should adopt the gamma
distributions and not any other. The solution to this apparent conundrum comes from
Shannon’s Information Theory and a theorem that he proved in 1948: “"The probability
distribution having maximum entropy (= uncertainty) over any FINITE range of real
values is the UNIFORM distribution over that range,” This is proven in Appendix A of the
present document.

So, at this point, we assume that each of the seven p, in (7) is a UNIFORM random

variable, whose mean value and standard deviation is known by the scientists working
in the respective field (let it be astronomy, or biology, or sociology). Notice that, for
such a uniform distribution, the knowledge of the mean value x, and of the standard

deviation ~,, automatically determines the RANGE of that random variable in between

its lower (called «,) and upper (called 4. ) limits: in fact these limits are given by the
equations

a; =ty _‘Eguf

8
b = My + \EG”_I (8)

(the “surprising” factor /3 in the above equations comes from the definitions of mean

value and standard deviation: please see equations (12), (15) and (17) in Appendix B
for the relevant proof). So the uniform distribution of each random variable p, is

perfectly determined by its mean value and standard deviation, and so are all its other
properties.

The next problem is the following:

OK, since we now know everything about each uniformly distributed »., what is the
probability distribution of N, given that N is the product (7) of all the p,?

In other words, not only do we want to find the analytical expression of the probability
density function of , but we also want to relate its mean value u, to all mean values

4y, of the D, and its standard deviation «, to all standard deviations «,, of the D,.

12
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This is a difficult problem.
It occupied the author's mind for no less than about ten years (1997-2007).

It is actually an ANALYTICALLY UNSOLVABLE problem, in that, to the best of this
author’s knowledge, it is IMPOSSIBLE to find an analytic expression for any FINITE
PRODUCT of uniform random variables 1, . This result is proven in Sections 2 thru 3.3 of

Appendix B (unfortunately!).

6. Solving the Statistical Drake Equation By Virtue of the
Central Limit Theorem (CLT) of Statistics

The solution to the problem of finding the analytical expression for the probability
density function of N in the statistical Drake equation was found by this author in
September 2007. The key steps are the following:

e Take the natural logs of both sides of the statistical Drake equation (7). This
changes the product into a sum.

e The mean values and standard deviations of the logs of the random variables n,

may all be expressed analytically in terms of the mean values and standard
deviations of the b, .

« Recall the Central Limit Theorem (CLT) of statistics, stating that (loosely speaking) if
you have a SUM of independent random variables, each of which is ARBITRARILY
DISTRIBUTED (hence, also including uniformly distributed), then, when the number
of terms in the sum increases indefinitely (i.e. for a sum of random variables
infinitely long)... the SUM RANDOM VARIABLE TENDS TO A GAUSSIAN.

« Thus, the natural log of N tends to a Gaussian.
s Thus, N tends to the LOGNORMAL DISTRIBUTION.

« The mean value and standard deviations of this lognormal distribution of & may all
be expressed analytically in terms of the mean values and standard deviations of
the logs of the D, already found previously.

This result is fundamental.

All the relevant equations are summarized in the following Table 1. This table is actually
the same as Table 2 of the author’s original paper IAC-08-A4.1.4, entitled “The
Statistical Drake Equation” and presented by him at the International Astronautical
Congress (IAC) held in Glasgow, UK, on October 15, 2008. This original paper is
reproduced in Appendix B.

To sum up, not only is it found that & approaches the completely known lognormal
distribution for an INFINITY of factors in the statistical Drake equation (7), but the way
is paved to further applications by removing the condition that the number of terms in
the product (7) must be FINITE.

13
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This possibility of ADDING ANY NUMBER OF FACTORS IN THE DRAKE EQUATION (7}
was not envisaged, of course, by Frank Drake back in 1961, when “summarizing” the
evolution of life in the galaxy in SEVEN simple STEPS. But today, the number of factors
in the Drake equation should already be increased: for instance, there is no mention in
the original Drake equation of the possibility that asteroidal impacts might destroy the
life on Earth at any time, and this is because the demise of the dinosaurs at the K/T
impact had not been yet understood by scientists in 1961, and was so only in 1980!

In practice, the number of factors should INCREASE as much as necessary in order to
get better and better estimates of N as long as our scientific knowledge increases. This
is called the “Data Enrichment Principle” and believe should be the next important goal
in the study of the statistical Drake equation.

Finally, a numerical example explaining how the statistical Drake equation works in the
practice will be given in the next section.

14
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Table 1. Summary of the Properties of the Lognormal Distribution That Applies
to the Random Variable N = Number of ET Communicating Civilizations in the

Galaxy
Random variable N = number of communicating ET
civilizations in galaxy
Probability distribution Lognormal
Probability density function | | _(nla) xf
=— . 7 =0
I (”) B \/EO' € (n =0y
Mean value o
(N)=ete?
Variance S [eni B IJ
Standard deviation _
gy =ete e’ 1
All the moments, i.e. k-th moment 2ot

Mode (= abscissa of the lognormal peak)

= i 4
Prnde = Ppeak = ¢ €

Value of the Mode Peak

Jf,'\ (Hlmdc ) = # ’ e‘.“ € :
Vir o
Median (= fifty-fifty probability value for median = mr = e
)
Skewness K, ( - ) o0 =3
i ¢ b2 2 5 0, s b o

(&, ): (e"r —]) (e"c +3¢7 +607 +6)
Kurtosis K4q C T L2013, g

(&)
Expression of xin terms of the lower (a;) ~ 7 )= b (e )~ 1]~ e, [Iner 1]
and upper (b:) limits of the Drake ’”_Z f)_Z b —a,
uniform input random variables D; - T
Expression of o*in terms of the lower (&) | , & . <& abfn(b)-nle, )]
and upper (b)) limits of the Drake 7=, IO'Y, = 1 - (b-a,F

uniform input random variables D;

7. An Example Explaining the Statistical Drake Equation

To understand how things work in practice for the statistical Drake equation, please
consider the following table 2. It is made up of three columns:

e The first column on the left lists the seven input sheer numbers that also become
s The mean values (middle column).

+ Finally the last column on the right lists the seven input standard deviations.

15
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The bottom line is the classical Drake equation (7). We see that, for this particular set
of seven inputs, the classical Drake equation (i.e. the product of the seven numbers)
yields a total of 3500 communicating extraterrestrial civilizations existing in the galaxy
right now,.

Ns = 330.107 UNs = Ns oNs = 1.10°
_ A0 o - o ot 10
100 P = 100

ne =1 lne = ne Jne =

30 10
fl = ufl =1 ofl = —
100 100

20 o 10

= i = 1i off = —
100 100
20 L i 1

te = — e = te gte = —
100 100

_ 10000 - L
100 10

N = Nsfpne ffifefl N = 3300

Tahble 2. Input Values (i.e. mean values and standard deviations) for the Seven Drake Uniform Random
Variables Di . The first column on the left lists the seven input sheer numbers that also become the mean values
{middle calumn). Finally the last column on the right lists the seven input standard deviations. The bottom line is
the classical Drake equation (7).

The statistical Drake equation, however, provides a much more articulated answer than
just the above sheer number & = 3500. In fact, a MathCad code written by this author
and capable of performing all the numerical calculations required by the statistical
Drake equation for a given set of seven input mean values plus seven input standard
deviations, yields for N the lognormal distribution (thin curve) plotted in Figure 2. We
see immediately that the peak of this thin curve (i.e. the mode) falls at about

Pomde = Mook = €7 e~ =250 (this is equation {99) of Appendix B), while the median (fifty-
fifty value splitting the lognormal density in two parts with equal undergoing areas) falls
at about a4, =¢* =1740 . These seemn to be smaller values than & = 3500 provided by
the classical Drake equations, but it's a wrong impression due to a poor “intuitive”
understanding of what statistics is! In fact, neither the mode nor the median are the
“really important” values: the really important value for & is the MEAN VALUE! Now if
you look at the thin curve in Figure 2 below (i.e. the lognormal distribution arising from
the Central Limit Theorem), you see that this curve has a LONG TAIL ON THE RIGHT! In
other words, it does NOT immediately go down to nearly zero beyond the peak of the
mode. Thus, when you actually compute the mean value, you should not be too

16
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surprised to find out that it equals (N)=¢*¢? ~4589.559 ~ 4590 communicating
civilizations now in the galaxy. This is the important number, and it is HIGHER than the
3500 provided by the classical Drake equation. Thus, in conclusion, THE STATISTICAL
EXTENSION of the classical Drake equation INCREASES QUR HOPES to find an
extraterrestrial civilization!

PROBABILITY DENSITY FUNCTION OF N

410" HN

SN

Prob. density function of N
ek
>

0 1000 2000 3000 4000
N = Number of ET Civilizations m Galaxy

Figure 2. Comparing the Two Probability Density Functions of the Random Variable N Found {1}
Without Resorting to the CLT at All {thick curve} and {2) Using the CLT and the Relevant Lognormal
Approximation (thin curve}.

Even more so our hopes are increased when we go on to consider the standard
deviation associated with the mean value 4590. In fact, the standard deviation is given

by equation (97) of Appendix B. This vields oy =¢" ¢ 2 ve™ —1=11195 and so the
expected number of A may actually be even much higher than the 4590 provided by
the mean value alone! The “upper limit of the one-sigma confidence interval” (as
statisticians call it), i.e. the sum 4590+11195 = 15,785, yields a higher number still!
(Note: the “lower limit of the one-sigma confidence interval is ZERO because the
lognormal distribution is POSITIVE (or, more correctly, non-negative)). Finally, the
reader should note that the thick curve depicted in Figure 2 is just the NUMERICAL
solution of the statistical Drake equation for a FINITE number of 7 input factors. Figure
2 actually shows that this curve “is well interpolated” by the lognormal distribution (thin
curve), i.e., by the neat analytical expression provided by the Central Limit Theorem for
an INFINITE number of factors in the Drake equation. That is, in conclusion, Figure 2
visually shows that taking 7 factors or an infinity of factors “is almost the same thing”
already for a value as small as 7.

17
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8. Finding the Probability Distribution of the Et-Distance By
Virtue of the Statistical Drake Equation

Having solved the statistical Drake equation by finding the lognormal distribution, we
are now in a position to solve the ET-DISTANCE problem by resorting to statistics again,
rather than just to the purely deterministic Distance Law (5), as we did in Section 2.
This is "scientifically mare serious” than just the purely deterministic Distance Law (5)
inasmuch as the new statistical Distance Law will yield a PROBABILITY DENSITY for the
Distance, with the relevant mean value and standard deviation. In other words, the
Distance Law (5) itself becomes a random variable whose probability distribution, mean
value and standard deviation must be computed by “replacing” into (5) the fact that v/
is now known to follow the lognormal distribution. This is mathematically described in
detail in Section 7 of Appendix A.

The important new result is the PROBABILITY DENSITY FOR THE DISTANCE, the
equation of which is

( [h RE;‘,;ﬁ_uerr;“;{,_u:| T

ln 5 T gt

3 ‘ 2
—-#-e 2a (9)

F N2ro

fET_Dishmu: (‘r) =

holding for r=0. This is equation (114 of Appendix B.

Starting from this equation, the MEAN VALUE OF THE random variable ET_DISTANCE is
computed as

T

{ET_Distance) =Ce * 18 (10)

which is equation (119) of Appendix B, and finally the ET_DISTANCE STANDARD

DEVIATION
A
Tt Distane = C € el Ve ? —1 (11)

which is equation (123) of Appendix B. Of course, all other descriptive statistical
quantities, such as moments, cumulants etc. can be computed upon starting from the
probability density (9), and the result is Table two hereafter, that is Table 3 of Appendix
B.

Finally, to complete this section, as well as this “introduction to the statistical Drake
equation,” the numerical values that equations (10) and (11) yield for the Input Table 1
are determined. They are, respectively:

a
FTI5

f, =Ce *e'® 22670 light years (12)

e vafie
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which is equation (153) of Appendix B, and

u e ot
OLT piswne =C€ ¢! Ve © —1 = 1309 light years (13)

which is equation (154) of Appendix B.
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Table 2. Summary of the Properties of the Probability Distribution That Applies
to the Random Variable ET_Distance Yielding the (average) Distance Between
Any Two Neighboring Communicating Civilizations in the Galaxy

Random variable

ET_Distance between any two neighboring
ET civilizations in galaxy assuming they are
UNIFORMLY distributed throughout the
whole galaxy volume.

Probability distribution

Unnamed

Probability density function

-fET_D Istane { f‘)

Numerical constant C related to the Milky

3 2 1 2% .
Way size C =36 RZ s Feiutany = 28845 light years
Mean value —
(ET_Disluncc) =Ce Jel8
Variance

20 o o
2 e Ty g Y
CET Disune = e 4 e’ -1

Standard deviation

_u o’ a
— s 3 18 '1|| L
JET Distung =Ce € € 1

All the moments, i.e. k-th moment

k’“ k:_U'

<ET_Distancek> =CFe ¢ I8

Mode (= abscissa of the lognormal peak})

= = R
Fde = rpe"uk =Ce €

Value of the Mode Peak

Peak Value of f,y piuelr) =

= -vaT Dristana ("n'ndc) =
c

Median (= fifty-fifty probability value for N}

median =m = Ce

Skewness o 5ot s
ele? —3e M 200
K3 X
3 3
(K4)'2 BT So der T ey 2
Clie? —4e? =3¢ Y +12¢7% —6¢ ¥
Kurtosis K da ot 26
= ¥ 123 13 % -6
(K> >“
Expression of #in terms of the lower (ai) < . L b (b )= 1] I, )-1]
and upper {bi} limits of the Drake uniform /“‘Z( J—Z P

input random variables Di

Expression of o*in terms of the lower {(ai)
and upper (bi) limits of the Drake uniform
input random variables Di

2 U ' 7 ;b [ln (&-)—l]] (ﬂ,-)]2
2.7 =2 T
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It is clarifying to draw the graph of the ET_Distance probability density {(9):

DISTANCE OF NEAREST ET_CIVILIZATION

=2}

5.63-10

20}

45-10

N\

20}

338-10

=2}

22510 \

—20) \

1.13-10

Probability density function (1/imcters)

~—

0 300 1600 1500 2000 2500 3000 3500 4000 4500 5000
ET_Distance from Earth (light ycars)

Figure 3. The Probability of Finding the Nearest Extraterrestrial Civilization at the distance r From Earth
{in light years) if the Values Assumed in the Drake Equation are Those Shown in Input Tahle 1. The

relevant probability density function [t piuune () is given by equation (9). Its mode (peak abscissa) equals 1933

light years, but its mean value is higher since the curve has a long tail on the right: the mean value equals in fact
2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FDR SETI,
inasmuch as the nearest ET galaxy civifization might fie at just 1 sigma = 2670-1309 = 1361 light years from us.

From Figure 3 we see that the probability of finding extraterrestrials is practically zero
up to a distance of about 500 light years from Earth. Then it starts increasing with the
increasing distance from Earth, and reaches its maximum at

s
u ot

Fe 7 =1933 light yews. (14)

fonde = rpr'ra.{' =Ce

This is the MOST LIKELY VALUE of the distance at which we can expect to find the
nearest extraterrestrial civilization.

It is not the mean value of the probability distribution (9) for fir piwame(r) . In fact, the

probability density (9) has an infinite tail on the right, as clearly shown in Figure 3, and
hence its mean value must be higher than its peak value. As given by (10) and (12), its

FI

o e = Ce e’ = 2670 light years. This is the MEAN (value of the)
DISTANCE at which we can expect to find extraterrestrials.

mean value is »

22
UNCLASSIFIED / ARSR=OFFEC k=S E=ON ==



UNCLASSIFIED/

After having found the above two distances {1933 and 2670 light years, respectively),
the next natural question that arises is: “what is the range, back and forth around the
mean value of the distance, within which we can expect to find extraterrestrials with
“the highest hopes?” The answer to this question is given by the notion of standard
deviation that we already found to be given by (11) and (13),

I i
5 . : .
Tip pisne =C€ © €' Ve ? —1=1309 light years.

More precisely, this is the so-called 1-sigma (distance) level. Probability theory then
shows that the nearest extraterrestrial civilization is expected to be located within this
range, i.e. within the two distances of (2670-1309) = 1361 light years and
(2670+1309) = 3979 light years, with probability given by the integral of £ 59

taken in between these two lower and upper limits, that is:

3979ighiyears

I o Frr |)ix1.-.m(")d"""=0-75:75% (15)
1361 hightyears -

In plain words: with 75 percent probability, the nearest extraterrestrial civilization is

located in between the distances of 1361 and 3979 light years from us, having assumed

the input values to the Drake Equation given by table 1. If we change those input

values, then all the numbers change again, of course.

9. The “"Data Enrichment Principle” as the Best CLT
Consequence Upon the Statistical Drake Equation (Any
Number of Factors Allowed)

As a fitting climax to all the statistical equations developed so far, let us now state our
“DATA ENRICHMENT PRINCIPLE.” It simply states that "The Higher the Number of
Factors in the Statistical Drake equation, The Better.”

Put in this simple way, it simply looks like a new way of saying that the CLT lets the
random variable Y approach the normal distribution when the number of terms in the
sum (4) approaches infinity. And this is the case, indeed.

10. Conclusions

We have sought to extend the classical Drake equation to let it encompass Statistics
and Probability.

This approach appears to pave the way to future, more profound investigations
intended not only to associate “error bars” to each factor in the Drake equation, but
especially to increase the number of factors themselves. In fact, this seems to be the
only way to incorporate into the Drake equation more and more new scientific
information as soon as it becomes available. In the long run, the Statistical Drake
equation might just become a huge computer code, growing in size and especially in
the depth of the scientific information it contains. It would thus be Humanity’s first
“Encyclopaedia Galactica.”
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Unfortunately, to extend the Drake equation to Statistics, it was necessary to use a
mathematical apparatus that is more sophisticated than just the simple product of
seven numbers.
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Appendix A: Proof of Shannon’s 1948 Theorem Stating
That the Uniform Distribution is the "Most Uncertain” One
Over a Finite Range of Values

Information Theory was initiated by Claude Shannon {1916-20C1) in his well-known
1948 two papers:

Feprmied wobh cemsrmen: Jom Joe S Duocen Toeisres’ snanay
o Yopp TR AIIES0 Riv Ootoben 1943

A Mathemaueal Theorv of Commumcation
By €. E. SHANNON

In this Appendix, we wish to draw attention to a couple of theocrems that Shannon
proves on pages 36 and 37 of his work, and read, respectively {(note that Shannon
omits the upper and lower limits of all integrals in the first theorem: they are minus
infinity and plus infinity, respectively):

3. Let p2.x1 be a cne-dimensional disnthution. The Jomef ) giving a maamiog entrapy subect to the
condition thas the standard deviatien of ¥ be fixed at o 12 Gaussian. To showe this we must maxumize

Eix - f}-":.\'_l logp xidvy

with

= f_;n vivray and - /pj.\'_uh'
as comstramts, This requares. by the caleulus of vartations. maxmmzing
H mvilogmx b ADYYT - ppmy dx
“he condinon Tt tus 15
hl -
1 legpiar - A - p— 0
and consequently (adninng the constanss to sausty the consraats]
! e

iy, — ——
Vo at

and
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T If v lnxted to 3 halflime i pony — G I v o7 D and the firet momient of x 15 fixed at 5
= / prvingy

-
L

then the maximum entopsy decurs when

and 15 equal to logeaa,

Now, we wish to point out that there is a third possible case, other than the two given
by Shannon. This is the case when the probability density function p(x) is limited to a

FINITE INTERVAL « < x <& . This is obviously the case with any physical POSITIVE
random variable, such as a distance, or the number N of extraterrestrial communicating
civilizations in the ,”. And 1t is easy to prove that for any such finite random variable the
maximum entropy distribution is the UNIFORM distribution over « < x<b. Shannon did
not bother to prove this simple theorem in his 1948 papers since he probably regarded
it as too trivial. But we prefer to point out this theorem since, in the language of the
statistical Drake equation, it sounds like:

*Since we don't know what the probability distribution of any one of the Drake random
variables D, is, it is safer to assume that each of them has the maximum possible

entropy overqg; <x<b,, i.e., that p, is UNIFORMLY distributed there.

The proof of this theorem is along the same lines as for the previous two cases
discussed by Shannon:

We start by assuming that «, <v<5,.

We then form the linear combination of the entropy integral plus the normalization
condition for D,

i,
f)"j [ plx)log plx)+ 2 pla)]dr=0
where A is a Lagrange multiplier.

Performing the variation, one finds

—log p(x)-1+4 =0 thatis: plx)=¢* .

Applying the normalization condition (constraint) to the last expression for p(x} yields

fs. £, b;
= -[ plx)dx =-[ e dx= e’l_l-[ dy=e* b, —a;)

o) it

that yields
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and finally

plx)= - ia with a4, <x<h,

f

showing that the maximum-entropy probability distribution over any FINITE interval
a; < x< b, 15 the UNIFORM distribution.
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Appendix B: Original Text of the Author’s Paper #IAC-08-
A4.1.4 Titled the Statistical Drake Equation

TAC-08-A4.14

THE STATISTICAL DRAKE EQUATION

Claudio Maccone

Co-Vice Chair, SETI Permanent Studyv Group, International Academy of Astronautics

Address: Via Martorelli, 43 - Torino (Turin) 10455 - Italy
URL: http/fwww.naccone.cony - E-mail: clmaccon @ libero.it

ABSTRACT. We provide the statistical generalization of the Drake equation.

From a simple product of seven positive numbers, the Druake equation is now turned into the product of seven

positive random variables. We call this “the Statistical Drake Equation,” The mathematical consequences of

this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of

Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of

which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) randont variable. This is called

the Lyapunov Form of the CLT, or the Lindeberg Forny ol the CLT, depending on the mathematical constraints
assumed on the third moments of the various probability distributions. In conclusion. we show that:

1} The new random variable N, yielding the number of communicating civilizations in the Galaxy. follows the
LOGNORMAL distribution. Then. as a consequence. the mean value of this lognormal distribution is the
ordinary & in the Drake equation. The standard deviation, mode, and all the moments of this lognormal ¥
are found also.

2) The seven factors in the ordinary Drake equation now become seven posilive random variables. The
probability distribution of each randem variable may be ARBITRARY. The CLT in the se-called
Lyapunev or Lindeberg forms (that both do not assume the factors to be identically distributed) attows for
that. In other words, the CLT “translates™ into our statistical Drake equation by allowing an arbitrary
probability distrihution for each factor. This is both physically realistic and practically very useful, of
COUrse.

3) An application ol our slatistical Drake equation then lollows. The {average) DISTANCE belween any two
neighboring and communicating civilizations in the Galaxy may be shown (o be inversely proportional to
the cubic roet of N. Then, in our approach, this distance becomes a new random variable. We derive the
relevant probability density function, apparently previously unknown and dubbed “Maccone distribution™
by Paul Davies.

4) DATA ENRICHMENT PRINCIPLE. It should be noticed that ANY positive numher of random variables
in the Statistical Druke Equation is compalible with the CLT. So, our generalization allows for many more
fuctors to be added in the future as long as more refined seientifie knowledgze about each lactor will be
known to the scientists. This capability to make room for more future factors in the statistical Drake
equation we call the “Data Enrichment Principle”, and we regard it as the key to more profound future
results in the fields of Astrohiclogy and SETIL.

Finally. a practical example is given of how our statistical Drake equation works numerically. We work out in
detail the case where each of the seven random variables s unilormly distributed around its own mean value
and has a given standard deviation. For instance, the number ol stars in the Galaxy is assumed to be uniformly
distributed around {say) 350 billions with a standard deviation of {say) 1 billion. Then, the resulting lognermal
distribution of & 1s computed numerically by virtue of a MathCad file that the author has written. This shows

28
UNCLASSIFIED/ /M OR=OrrIrerRrosTuUNeTT



UNCLASSIFIED/ /FOR=SF it ti=0hinf

that the mean value of the lognormal random variable N is actually of the samme order as the classical N given
by the ordinary Drake equation, as one might expect from a good statistical generalization.

1. INTRODUCTION

The Drake equalion is a now famous result
(see ref. [1] lor the Wikipedia summary) in the
fields of SETI {the Search for ExtraTerrestial
Intelligence, see ref. | 2]} and Astrohiology (see ref.
[3]). Devised in 1960, the Drake equation was the
first scientific attempt to estimate the number N of
ExtraTerrestrial civilizations in the Galaxy with
which we might come in contacl. Frank D. Drake
(see ref. [4]) proposed it as the product of seven
factors:

N =Ns-fpne- fl-fi- fio- JI.. (1)

Where:

1) Ny is the estimated number of stars in our
Galaxy.

2) fp is lhe fraction (= percentage) of such slars
that have planets.

3) ne is the number “Earth-type™ such planets
around the given star; in other words, ne is
nuinber of planets, in a given stellar systemn,
on which the chemical conditions exist for life
to begm its coursce: they are “ready for life,”

4y flis fraction (— percentage) of such “‘ready for
life” planets on which life actually starts and
grows up {but not yet to the “intelligence™
level).

5) fi s the fraction (= percentage) of such
“planets with life forms™ that actually evolve
until some form of “intelhgent civilization™
emerges  (like the firsl, historic  human
civilizations on Earth).

6) fc is the fraction (= percentage) of such
“planets  with  civilizations” where the
civihzations evolve to the point of heing able
lo  communicate across the inlerstellar
distances  with other {al least) similarly
evolved civilizations. As far as we know in
2008, this means that they must be aware of
the Maxwell equations governing radio waves,
as well as of computers and radioastronomy
{at least).

7y fL is the (raction ol galactic civilizalions alive
al the time when we, poor humans, attempl to
pick up their radie signals (that they throw out
into space just as we have done since 1900,
when Marconi  started the transatlantic
transmissions),  In other words, fL is the
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numher of civilizations now transmitting and
recciving, and this implics an cstimate of “how
long will a technological civilization hve?”
that nobody can make at the momentl. Also,
are they going to destroy themselves in a
nuclear war, and thus live only a few decades
of technological civilization? Or are they
slowly becoming wiser, reject war, speak a
single language (like English today). and
merge inte a single “nation”, thus hiving in
peace for ages? Or will robots take over one
day making “flesh animals™ disappear forever
(the so-called “post-biological umverse™)?
No one knows. ..

But let us go back to the Drake equation (1).

In the fifty years of its existence, a number of
suggestions have been put forward about the
different numeric values of its seven factors. Of
course, every different set of these seven input
numbers yields a dilferent value lor N, and we can
endlessly play that way. Bul we claim that these
are like... children plays!

We claim the classical Drake equation (1), as
we shall call it from now on to distinguish it from
our statistical Drake equation to he introduced in
the coming sections, well, the classical Drake
equation is scientifically inadequate in one regard
at least: it just handles sheer numbers and does not
associate an error bar to each of its seven factors.
At the very least, we want to associate an error
bar to each D;.

Well, we have thus reached STEP ONE in our
improvement of the classical Drake equation:
replace each sheer number by a probability
distribation!

The reader is now asked to look al the flow
chart in the nexl page as a guide (o this puaper,
please.

2. STEP 1: LETTING EACH FACTOR
BECOME A RANDOM VARIABLE

In this paper we adopt the nolations of the
great book “Probability, Random Variables and
Stochastic  Processes”™ by  Athanasios Papoulis
(1921-2002), now re-published as Papoulis-Pitlai,
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ref. [5]. The advantage of this notation is that it
makes a neat distinction between probabilistic {or
statistical: it’s the same thing here) variables,
always denoted by eapitals, from non-probabilistic
{or “deterministic™) variables, always denoted by
lower-case letlers. Adopling the Papoulis notation
also s a tribute to him by this author, who was a
Fulbright Grantee in the United States with him at
the Polytechnic Institute (now Polytechnic
University) of New York in the vears 1977-78-79.

We  thus intreduce seven new  {positive)
random variables  D; (“D” from “Drake™) defined

as
D, = Ns
=P
Dy =ne
D, =f {2)
Ds=fi
D, = f
D=1

s0 thalt aur STATISTICAL Drake eguation may be
simply rewrilien asg

30

N = f[ D, . (3)
i1

Of course, & now becomes a {positive) random
variable too, having its own {positive) mean value
and standard deviation, Just as each of the D has ity
awn (posilive) mean value and standard deviaiion...
... the natural question then arises: how are the seven
mean values an the right related 1w the mean value on
the left?

. and how are the seven standard deviations on the
right related to the standard deviation on the left?

Just take the next step. ..

3. STEP2: INTRODUCING LOGS TO
CHANGE THE PRODUCT INTO A SUM

Pruducis ol random variables are not casy 1
hundle in prubability theory. It is actually much
casicr 1w handle sums of random variables, rather
than pruducts, because:

1) The probability density al the sum afl two or
more independent random variables is the
convelution of the relevant probability
densities {worry not about the equations,
right now).

2y The Fourier transform of the convolution
simply is the product of the Fourler
transforms  {again, worry not about the
equations, ar this point)
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| 1. Introduction |
I
l 2, 5tep 1: Letting each factor become a random |
|
‘ 2.1. Step 2: Introducing lIngs to change the product into a |
|

‘ 2,2, 5tep 3: The transformation 1aw of random variables. |

]

3. Step 4 Assuming the easiest input distribution for
each O;: the uniform distribution.

3.1. Step 5: A numerical example of the Statistical Drake equation
with uniform distributions for the Drake random
variables D;.

3.2. Step 6: Computing the logs of the
7 uniformiy distributed
Drake random variables
D

3.3, 5tep 7: Finding the probability
density function of N, but
only numerically not
analyticaily.

DEAD END! 4. The Central Limit Theorem (CLT) of Statistics.

5. LDGNDRMAL distribution as the probability
distribution of the number N of
communicating ExtraTerrestrial Civilizations
in the Galaxy,

6. Comparing the CLT results with the Non-CLT
results, and discarding the Non-CLT approach.

7. DISTANCE to the nearest ExtraTerrestrial
Civilization as a probability distribution (Paul
Davies dubbed that the Maccone distribution).

7.1 Classical, non-probabilistic derivation of the
Distance to the nearest ET Civilization.

7.2 Probabilistic derivation of probability density
function for nearest ET Civilization Distance,

‘ 7.3 Statistical properties of the distribution.

‘ 7.4 Numerical example of the distribution.

8. DATA ENRICHMENT PRINCIPLE as the best
CLT consequence upon the Drake equation:
any number of factors allowed for.,
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So, let us take the natural logs of both sides of the
Statistical Drake cquation (3) und change il inta a
sum:

7 7
n{N)=In HD,. =Z|n([)r-). ()
i—l i1

It 1s now convenient to introduce eight new (positive}
random variables defined as tollows:

[¥=l(n)
v, =m(D;) i=1..7

Upen inversion, the first equation of (3) yields the
important equation, that will be used in the sequel

N=el. (6)

We are now ready to take STEP THREE.

STEP 3: THE TRANSFORMATION LAW
OF RANDOM VARIABLES

So far we did not mention at all the problem:
“which probability distribution shall we attach two
each of the seven (positive) random vanables D, 7

1 is not cusy to answer this question because we
do not have the least scientific clue 10 what
probability distributions fit at best w cach of the
seven points listed in Section 1.

Yet, at least one trivial error must be avoided:
claiming that each of those seven random variables
must have a Gaussian (1.e. normal) distribution. In
tact, the Gaussian distribution, having the well-
known bell-shaped probability density function

{.\'—.u_]'\'
1 h 2ot

V2ro

Fxupo)=

hus its independent varinble v ranging between —oo
and a2 and so it can apply to a read random variable
¥ only, and never ta poxitive random variables like
those in the statistical Drake equation (3). Period.

Searching again tor probability density tunctions
that represent positive random variables, an obvious
choice would be the gamma distributions {see, tor
mstance, ref. [6]). However, we discarded this choice
too because of o ditferent reason: please keep in nund
that, according to (5), once we selected a particular
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(5)

e (6>0) (7

type of probability density function {pdf) tor the last
seven af cquatians (3). then we must compute the
(new and different) pdf ot the logs of such random
variables. And the pdf of these logs certainly 1s not
gamma-type any more.

It 1s high time now to remind the reader of a
certain theorem that 1s proved in probability courses,
but, unfortunately, does not seem to have a specific
name. It is the fransformation law (so we shall call
it, see, for instance, ref, |5]) allowing us to compute
the pdf of a certain new random variable ¥ that is a
known tunctiom Y = g(X) af another  random
variable X having a known pdt. In other words, it the
pdf f, (x) of a certain random variable X is known,

then the pdt f, (\,) of the new random variable ¥,

related to X hy the functional relationship
Y =g2(X) (8)

can be calculated according to this rule:

17 First invert the corresponding non-probabilistic
cyuation _\-‘:g(_r) and denote by _rr-(_y) the
various real roots resulting trom the this
inversion.

2)  Second, take notice whether these real roots may
be either finitely- or infinitely-many. according
to the nature of the function y = g(,\'),

3) Third, the probability density function of Y is
then given by the {finite or infinite} sum

fy(v) Z . (\)X 9

;

where the summiation extends to all roots x, (y) and

g'(,rr-(.v)j is the absolute value of the first

derivative of g (x] where the i-th root ¥, (\) has

been replaced instead of x.

Since we must use this transformaton law to transter
from the D; to the ¥, :]n(DI-), it is clear that we

need to start from a £, pdt that is as simple as

possihle. The gamma pdf is not responding to this
need Dbecause the analytic expression of the
transformed pdf is very complicated (or, at least, it
looked so to this author in the first instance). Also,
the gamma distribution has two free parameters in it,
and this “complicates” its application to the variaus
meunings of the Drake equation. In conclusion, we
discarded the gamma distributions wnd  conlined
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ourselves to the simpler uniform distribution instead,
as shown in the nest section.

4. STEP 4: ASSUMING THE EASIEST
INPUT DISTRIBUTION FOR EACH D::
THE UNIFORM DISTRIBUTION

Let us now suppose that each of the seven D; is
distributed UNIFORMLY in the interval ranging
from the lawer lmit q, =0 fto the upper lmit
b, za;.

This 1s the same as saying that the probability
density function of each of the seven Drake random
variables D, has the equation

with=g sx<ph

4

funiihrm_Di {l) = { ]U)

b, —a,

as it follows at once from the normalization condition
Iy
,funjiiurm_Dl <)‘] de=1. (1 IJ
i,
Let us now consider the mean value of such

uniform £); defined by

o £ i 1 £
(UI’I[TOI‘ID_D-[ ) = A funiiin'm_ D <)‘] de= I X dx
ot bo—, da

By wards (as it is intuitively obvious): the mean
value of the uniform distribution simply is the mean
of the lower plus upper limit of the variable range

o, + b
2

(2

(unifurm_Di ) =

In order to find the wvariance af the unifarm
distrihutiom, we first need finding the sccand moment

. ”

{uniform_D-lz > = I B ..’Qmifiu'm_D; (\’) d.x

o,

33

_ (b, —ai}(af +a;b; +bf] a? +a;b; +l)f

3, —a,) 3

The second moment of the uniform distribution is
thus

2 2
a; +ab; +b;

13
3 (13}

<unil'01m_D]- 2 > =

From {12 and {13) we may now denve the variance
of the umform distribution

T

Fini koo I

<unif0rm_D 2 > —{uniform_D, )2

_ af +a;b, + b’ B (a;, + b, ) (- )1 (14)
3 4 2

Upon taking the square root of both sides ot {14), we
tinally obtain the standard deviation of the uniform
distribution:

b g

el ) =
wonkhami_ L,
23

(15)

We now wish ta perform a caleulation that is
mathematically trivial, hut rather uncxpected from
the intuitive point of view, and very important [or our
applications o the stalistical Drake cquation. Just
cansider the lwa simullancaus equatians (12) and

(15)

a; +h

{uniform_D, ) =
N (16)

O - =
unahern 3,
243

Upon inverting this trivial linear system, one finds

[a ;= (un iform_D, } -3 Tunitarm 0,

. 17
lf)f- = (un ifOl'l“_Di ) + '\/g Juniltn'rn_n_, ( )

This 15 of paramount importance for our application
the Statistical Drake equation inasmuch as it shows
that:

if ane (scientiftcally) assigns the mean vale and
standard deviation of a certain Drake random
variable D, then the lower and upper limits af the
relevant uniform distributian are given by the two
equations (17), respectively.
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In other words, there 1s a factor of \E: 1.732
included in the two cquations (17) that is not obvious
at all ta human intuition, and must indecd he taken
into account.

The application of this result to the Statistical Drake
cquation is discussed in the next sectian.

3.1 STEP 5: A NUMERICAL EXAMPLE
OF THE STATISTICAL DRAKE
EQUATION WITH UNIFORM
DISTRIBUTIONS FOR THE DRAKE
RANDOM VARIABLES D;

The first variable Ns in the classical Drake
cquation (1) is the number al stars in aur Galaxy.
Nobody knows how many they arc exactly (D). Only
statistical estimates can be made by astronomers, and
they oscillate (say) around a mean value of 350
billions (if this value is indeed correct!). This being
the situation, we assume that our uniformly
distributed random variable Ns has a mean value of
350 billions minus or plus a standard deviation of
(say) one billion (we don’t care whether this number
15 scientifically the best esumate as of August 2008;
we just want to set up a numerical example of our
Statistical Drake equation). In other words, we now
assume that one has:

(uniform_D, ) = 350 -10°

o =1-10°

uniknm_T3,

(18)

Therefore, according to equations {17} the lower and
upper limit of our unitarm distribution for the
randam variable Ns=0, are, respectively

Ay, = (Llnii'unn_D] b - \Egu”mm”_])l =348.3-10°

o (19)
by, = {unifom D Y+ v3 0, =351.710°

Simitarly we proceed tor all the other six random
variables in the Statistical Drake cquation (3).

For instance, we assume that the fraction of stars
that have plancts is 50%%, 1.c. 30/100, and this will he
the mean vatue of the random variable fp=1, We
also assume that the relevant standard deviation wilt
be 0%, 1. e. that o, =10/100 . Therefore, the
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relevant lower and upper limits for the uniform
distribution of fp=D:turn oul 1o be

= (umform_Dg > - ‘/ggunili)rm_D_s_ =

(20)
by, = (uniform_D3 )+ V30 ipmp, =0.673

The next Drake random variable i1s the number
ne of “Earth-type™ planets in a given star system.
Taking example from the Solar Svstem, since only
the Earth is truly “Earth-tvpe™, the mean value of ne
15 clearly I, but the standard deviation 1s not zero 1f
we assume that Mars also may be regarded as Earth-
type. Since there are thus two Earth-type planets in
the Solar System, we must assume a standard

deviation of 1743 =0.577 to compensate the NE)
appearing in {17} in order to (inally vicld two “Earth-
type” planets (Earth and Mars) (or the upper limit of
the random variable ne. In other words, we assume
that

Uy = (umtorm_D;) - ‘/g Finiform Dy

(21)
b, = {uniform_D}+ \/gﬂ'ummrm_m =2

The next four Drake random variables have even
more “arbitrarily” assumed values that we simply
assume for the sake of making up a numerical
example of our Staustical Drake equation with
vniform entry distributions. So, we really make no
assumption about the astronomy, or the binlogy, or
the sociology of the Drake eguation: we just care
ehout its mathematfics.

All aur assumed entries are given in Table 1.

Please notice that, had we assumed all the
standard deviatiems to cqual zere in Table 1, then our
Statistical Drake cquation (3) would have obviously
reduced to the classical Drake cquation (1), and the
resulting number of civilizations in the Galaxy would
have turned out 1o be 3500:

[V =3500] (22)

This is the important deterministic numhber that we
will use in the sequel of this paper for comparison
with our statistical results on the mean value of N,
i.e.{N). This will be explained in Sections 3.3 and 5.
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Ns = 350.10° UNs = Ns oNs =110
t_p__so - 10
T 100 Hp - 100
1
ne =1 Lne ‘= ne one = .\f_
e 20 ufl =1 ol = 2
100 100
y 20 L. ) 10
= ufi = fi = —
100 100
. 20 o ) 10
tc = e = Ic gic '= —
100 100
16000 000
fL = w WL =1L oil = ! W
10 10
N = Ns.fp-ne i fe 4L N = 3300

Table 1. Input valucs (i.c. mean values and standard deviations) for the seven Drake unitorm random variables D;.
The first column an the left lists the seven input sheer numhers that alsp hecome the mean values (middle eoplumn).
Finally the last calumn pn the right lists the seven input standard deviations. The bottom line is the classical Drake

cquation {1).

3.2 STEP 6: COMPUTING THE LOGS
OF THE 7 UNIFORMY
DISTRIBUTED DRAKE RANDOM
VARIABLES D;

Intuitively speaking, the nawral log of a
uniformly distributed random variable may set be
another uniformly distributed random variable! This
is obvious from the trivial diagram of y:ln(x]
shown below:

Naturalloganthm of x

z s

T

R

?_:1

E ol

E g

b

£

i -

=

T,

L e g
) 0 1 2 3 4 5

POSITIVE imdependent vanable x

Figure 1. The simple function v = Infxj.

35

Sv. if we have a uniformly distributed random
vuriable D; with lower limit a,and upper limit b;, the
rundom variable

Y,=In(D,) i=1..7 (23)

musl have s range limited in between the lower limit
infa;) and the upper limit fn(bi). In other words, this
are the Ipwer and upper limits of the relevant
probability density tunction fy (\] But what 1% the
actual analytic expression of such a pdt?. To find i,
we must resort to the general transtormation law tor
random variables, defined hy equation {9). Here we
obviously have

y=glv)=In(x) 24)
That, upon mversion, yields the single rnot
x(r)=xy)=e". (25)

On the other hand, ditferentiating (24) one gets
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. 1 . 1
g(¥)== and glx(¥))=—==— 6
x aly) e

where (25) was alrecady used in the last step. By
virtue of the uniform prohahility density function
(10) and of (26), the general transtormation law (9)
finally yiclds

AR Jx (-’ﬁ'(.‘}')) 1 e
Ihl(l‘f)_ Zr: ‘gl(-‘i,'(.‘r'u B bi—a; | - b —a; - 27

I

In other words, the requested pdf of ¥ 1s

IAGE i=1..7| |infe )<y <infp )] (28

Probability density functions of the natural logs of
all the uniformly distributed Drake random
variablex D; .

This is indeed a positive tunction of v over the
interval ]n(ai)é ¥ = ]Jl(b,-), as for every pdt, and it 15
cusy Lo see that its normalization candition 18
[ullilled:

lll{b } ln{b } oV _h]“’.] _ _lnf“.)
P o [ e e
L ' L

nje, ) nfa; ) b,- - ) br- —d;

..(29)

Next we want to find the mecan value and
standard deviation of ¥, | since these play a crucial
role for fulure developments. The mean value <Yr-) s

given by

In(#. ) (B} v ot
<yf.):J‘] \,.fﬂ(}.)d},:‘l‘l AL

nlu, ) nfe, }b! -

b, [ln(b,- )- l] — []n[a; ] - ]] ‘

b,

i

(30

- '{"r'
This is thus the mean value of the natural log of all

the unifarmly distributed Drake random variables
D;

f'}/.) _ <|n (Dr- )) _ b, [ln(b,-]— 1]—ar-[ln(a!- }- 1] 31

WO
b, —u,

36

In order to tind the variance also. we must first
compule the mean value of the square of ¥, , that 1s

N s}, ) Infi by 2 o0
(Yf) = j v e {v)dy = J > ¢ dy
| :

e, 17 Infa, ) b!- —d;

_ b, [In 2 (b;- )— ZIn (bf- )+ 2]— i [ln 2 ((;J- )— 2 ln(ar- )+ 2] .

b,’ - f.‘fr'

.(32)

The variance aof ¥i = In(Dx) 1s now given by (32)
minus the square of (31), that, atter a few reductions,
vield:

. a;b[in{b, )= e, ) |

(br- —a; ]2

Whence the corresponding standard deviation

1:h [In{b, )= nfe, )]
ow,.=rfmw=\/1—“')’["()’) vl

(b.f - ).3

Let us now turn to another topic: the use of
Fourier transforms, that, in probahility theory, are
called “characteristic functions,” Following again the
notations of Papoulis (refl [5T) we call “characteristic
function™, <I>y;(r';] , of an assigned  probability

(33

2 2
Ty =Onin) =

distribution ¥; . the Fourier transform of the relevant

probability density function, that is (with j=+/-1)

o (0)= e p v (35)

The use of characteristic functions simplifics things
greatly. For instance, the calculation of all moments
of a known pdf becomes trivial it the relevant
characteristic  function  is  known, and greatly
simplified also are the proofs of important theorems
of statistics, like the Central Limit Theorem thal we
will use in Section 4. Another important result is that
the characteristic function of the sum of a finile
number of independent random variables is simply
given by the product of the corresponding
characteristic functions. This 15 just the case we are
facing in the Statistical Drake equation (3) and so we
arz now led to find the characteristic function of the
random variable ¥; . i.e.

y

wo L iy . P
Ay = LI ety — b b 44
&y (.? ) j ety (} ]d 3 '[In[_”; ) ¢ b &
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|, ]

Ini, ) ey
_ ! j c’“' i) dv = I . I
by —a; Jnfa;) b—a, 1+if

rishmin} _ (michela) — plode g 1oic

& —a)0+70) (B —a)(+0)

Thus, the characteristic function of the natural log
of the Drake unifarm random varialle D;ix given by

(36)

Y
b —aE

G )

(37)

3.3 STEP 7: FINDING THE
PROBABILITY DENSITY
FUNCTION OF N, BUT ONLY
NUMERICALLY NOT
ANALYTICALLY

Having found the characteristic  functions
Dy (;’J of the logs of the seven input random
variables D, . we can now immediately find the
characteristic tunction of the random variable ¥ =
In(A) defined by (5). In fact, by virtue of (4), of the
well-known Fourier transtorm property stating that
“the Fourier transform of a convolution is the product
of the Fourier transforms™, and of (37). it
immediately follows that (;] cquals the product
of the seven @ (;j):

7 L_‘l+;.. _ l+;_

oI

. (38)
i—1 i—1 I+ 'H'J

The next step is to irvert this Fourier transform in
order 10 get the probability density function of the
random variable ¥ = In{A). In other words, we must
compute the following inverse Fourier transtorm

:Lj' SR b, f
o <

[ 7

=$_jﬁ e 5| [ [os (g]] d¢

i—l

(K.

I L B g
(e T2 ™ e 39
27 j() _1:.[(”;—“;')( L+ j¢ )} B9

37

[0 e

This author regrets that he was unable w compute the
last integral analytically. He had to compute it
numerically tor the particular values of the 14 « and
b; that follow from Table | and equations 7. The
result was the probability density function for ¥ =
In(N} plotted in the following Figure 2.

0 4PR(JB. DENSITY FUNCTION OF Y=Ini N}

0.3 ’
4
02 A
/

{1l
S \

nl1 23 4 5 6 7 8 9101112
Independent vatiable Y = In{N)

Probability density function of Y

Figure 2. Probability density function of ¥ = lo(N)
computed numerically by virtue of the integral (39).
The two “funny gaps™ in the curve are due to the
numeric limitations in the MathCad numeric solver
that the author used for this numeric computation.

We are now just one more step from finding the
probability  density of N, the number of
ExtraTerrestrial Civilizations in the Galaxy predicted
by our Statistical Drake equation (3). The point here
is to transter from the prohability density tunction ot
¥ to that of N, knowing that ¥ = In{¥), or
alternatively, that A=cxp(¥), as stated hy (6). We
must thus resort to the transformation law ot random
variables (9) hy sctting

y=glr)=e". (40)
This, upon inversion, vields the sirgle root
x{y)=x(v)=In(v). (41)

On the other hand, ditferentiating (40) one gets

g()=e" and g {x{y)= ) yo42)
where (41) was already used in the last step. The
general transtormation law (%) tinally vields

e (Jj SR

f
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This  probability density function £, (\) was
computed numerically hy using (43} and the numeric
curve given hy (39), and the result 1s shown in Figure
3

4 ]OqI’ROBABlLI'l'Y DENSITY FUNCTION OF N

3 \
N,

-
2107 N

L
BhN [ —

ﬁ

Prob. density lunction of N

0 1000 2000 3000 4000
N = Number of ET Civilizations in Galaxy

Figure 3. The numeric (and nat analylic) probability
density function curve f (\) of the number N of
ExtraTerrestrial Civilizations in the Galaxy accarding
to the Statistical Drake equatiem (3). We see that the
curve peak (i.c. the mode) is very close to law values
af ¥, but the tail on the right is high, meaning that the
resulting mean  value (N) is ol the order of

thousands.

We now want to compute the mean value (N}
of the probability denstty (43). Clearly, tt is given by

"

(N) = I v fy(v)dy. (44)

]

This integral too was computed numerically, and the
result was a perfeet mateh with N=3500 of (22), that
is

(N) = 3499.99880 177509 +0.00000012 49146861 (45)

Note that this result was computed numencally in the
complex domain because of the Fourier transforms,
and that the real part 15 virtually 3500 {as expected)
while the imaginary part is virtually zere because of
the rounding errors. So. this result is excellent, and
proves that the theory presented so far s
mathematically correct.

Finally we want to consider the standard
deviation. This also had to be computed numerically,

resulting in

oy = 395342910 143389 +0.00000003 ZROXI381 . (46)
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This standard deviation, higher than the mean value,
implics that N might range in between 0 and 7453,

This completes our study of the probability
density function of & if the seven uniform Drake
nput random vanable 2 have the mean values and
standard deviations listed 1n Table 1.

We conclude that, unfortunately, even under the
simplifving assumpfions that the Di be uniformily
distributed, if is unpossible to solve the full problem
analytically, since all calculations beyond equation
(38} had to be performed numerically.

This is no gaod.

Shall we thus laose faith, and declare “impassihle™
the task of finding an analytic expression for the
probability density functian f, (\,) ?

Rather surprisingly, the answer is *no”, and there
is indeed a way out of this dead-end, as we shall see
in the next scetian.

5. THE CENTRAL LIMIT THEOREM (CLT)
OF STATISTICS

Indeed there is a good, approximating analytical
expression for f (») , and this 1s the following

legnormal probability density function

il uy

Felomo)-n e 2 (20| @)
Y N2ro

To understand why, we must resort to what is
perhaps the most beautiful theorem of Statistics:
the Central Limit Theorem (abbreviated CLT).
Historically, the CLT wus in fact proven first in
901 by the Russian nuthematician Alexandr
Lyapunov (1857-1918), und later (1920} by the
Finnish mathematician Jarl Waldemar Lindeberg
(1876-1932) under weaker conditions. These
conditions are certainty fulfitted in the context of
the Drake cquation because of the “reality™ of the
astronomy, biology and sociology involved with it,
and we are not going to discuss this point any
further here. A good, synthetic description of the
Central Limit Theorem (CLT) of Statistics 1s found
at the Wikipedia site (ref. |7]) to which the reader
is referred for more details, such as the equations
[or the Lyapunov and the Lindeberg conditions,
makimg the theorem “rigorously™ valid.
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Put in loose terms, the CLT states that, if one
has a sum of random variables even NOT
identically distributed, thix sum tends ta a narmal
distributian when the number af terms making up
the sum tends ta infinity. Ala, the normal
distributian mean value is the sum of the mean
values af the addend randam variables, and the
rormal distriliution variance is the sum af the
variances of the addend random variables.

Let us now write down the equations of the CLLT
in the form needed to apply it to our Statistical Drake
equation (3). The idea is to apply the CLT to the sum
of random variahles given by (4) and (5) whatever
their prabability distributians can passibly be. In
ather words, the CLT applied to the Statistical Drake
equation (3) leads immediately to the following three
cquations:

1} The sum of the (arbitrarily distributed)

independent random variables ¥, mukes up
the new random variable Y.

2) The sum of their mean values makes up the

new mean value af ¥,

3) The sum af their variances makes up the

new variance of ¥,

In equations:
Y :i}g
-1
(r) :i(}g) (48)
i-1
2= o2
i-1

This completes our synthetic description of the CLT
for sums of random variables.

6. THE LOGNORMAL DISTRIBTION IS
THE DISTRIBUTION OF THE NUMBER
N OF EXTRATERRESTRIAL
CIVILIZATIONS IN THE GALAXY

The CLT may of course be extended to products
of random variables upon taking the logs of both
sides, just as we did in equation (3). It then follows
that the exponent random variable, like Y in (6),
tends to a normal random variable, and, as a
conseguence, it follows that the base random
variable, like N in (6), fends to a lognormal random
variable.
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To understand this fact better in mathematical
terms consider again of the transformation law (9) af
random variables. The question is: what 1s the
probability density tunction of the random variable N
0 equation (6), that 1s, what 1s the probability density
tunction of the lognormal distribution? To find it, set

v=glx}=e". (49)
This, upan inversion, yiclds the single root
x,(¥)=x{y}=mn(5}). (50)
On the other hand, ditferentiating (49) ane gets

g (x)=e* and g'(.\:l(_\-‘)):emm:y (51)
where (30) was already used in the last step. The
general transtformation law (9) tinally yields

oS )
In (}) Z‘g'(x,- (\)* |1}| fy (l ( ]] (52)

Therefore, replacing the probability density on the
right by virtue of the well-known normal {or
Gaussian) distribution given by equation (7), the
lognormal distribution ot equation (47} is tound, and
the derivation of the lognormal distribution from the
normal distribution 15 proved.

In view ot future calculations, it 15 also usetul to
point out the so-called “Gaussian integral™, that is:

r b

Al omy
I e e  dy =
—r

This follows immediately from the normalization
condlition of the Gaussian (7). that is

B
e, A>0, B=rcal.| (53)

NEY

Ko,

2 =1, (54)

A
4
[

Just upon expanding the square at the exponent and
making the two replacements (we skip all steps)

2o (55)
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In the sequel of this paper we shall denote the
independent variable al the lognormal distribution
(47) by a lower case letter # to remind the reader that
corresponding random varable N 1s the positive
mteger number of ExtraTerrestrial Civilizations in
the Galaxy. In other words, 7 will be treated as a
positive real number in all calculations 1o tollow
because it 18 a “large” number (i.e. a continuous
variable) compared to the only civilization that we
know of, i.e. ourselves, In conclusion, from now on
the lognormal probability density funetion of N will
be written as

[In(n }—;J ]'\'

WANEIS NP
.f.-\’ (’; ]_ n ﬂ(f 4

(n=1) (50)

Having so said. we now turn to the statistical
properties of the lognormal distribution (33), i.e. to
the statistical properties that describe the npumber &
of ExtraTerrestrial Civilizations in the Galaxy.

Our first goal 1s to prove an equation vielding all
the moments of the lagnormal distribution (56), that

is. far cvery non-negative integer £ — 0, 1, 2, ... ane
has
& k e
<N >=€‘” e | (57)

The relevant proof starts with the definition of the %-
th moment

One then transforms the above integral by
virtue of the substitution

In[n] =z. 538)
The new ntegral 1n g 1s then seen to
reduce to the Gaussian integral (53)

(we skip all steps here) and (57)
foltows
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Upon  sctting  A=0 into  (56), the
normalization condition for £, () follows

L” (n)dn=1. (59)

Upon setting k=1 into (36), the important
mean value of the randam variable N 1s tound

(Ny=ee? | (60)

Upon sctting £ =2 into (56), the mean value
of the square of the random variable A s found

<N2>=(?2““ f_)?”: . 6h

The variance af N now follows from the last two
formutae:

oy =e e (*"2 - ]J. (62)

The square root of this is the important standard
deviation formula for the N random variable

N

o
ay =efe? e —1| (63)

The third moment is obtained upon setting
k=3 mto (56)

¥ .

[+2

<."V3>:E}’”€j . (64)

Finally, upon setting 4 =4, the fourth moment
of N is found

<N4> =M 8T (65)

Our next goal is to find the cumultants of M. In
principte. we could compute alt the cumulants K

from the generic i-th moment g, by virtue of the
recursion formula (see ref. [8])

o (i .
K.=u —Z (k ~ J K, pt,_;. (66)

k-1
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In practice, however, here we shall confine
ourselves to the computation of the first four
cumulants only because they only are required to
find the skewness and kurtosis of the distribution.
Then, the first four cumulants in terms of the tirst
four moments read:

K, =ﬂ1
KEI:-'HI_K]_ ; (6?)
Ky=4,-3K K, - K]
Ky=, —3K Ky -3K; 6K Kl - K.
These equations yield, respectively:
(J"\
K =e'e? . (68)
K, =e? ¢ [e": —l). {69)
‘J (T:
K,=e¥e? | (70)

K, = e ((."Ti —l)‘ ({.‘30: 1362 1667 +6) (711

From these we derive the skewness

(72)

T13627 _6. (73)

Finally, we want to lind the mode ol the
lognormal probability density function, ie. the
abscissa of its peuk. To do so. we must first
compute the derivative of the probability density
function f, (7} of equation (36}, and then set it
equal to zero. This derivative is actually the
derivative of the ratio of two lunctions of #, as it
plainly appears lrom (57). Thus, let us set lor a
moment

a1

F[) (In[n] ,u (74)

where  “E™ stands  for
differentiating this, one gets

“exponent,”  Upon

2{mfn]- )

{75}

E'{n)= o

1
n

But the lognormal probability density function (56),
by virtue of {74), now reads

(76)

So that its dertvative is

dfer piaane () __ 1 -e E[”}E'(n)»n —1ee B

dr fo;‘ro" "

_ 1 '—e_E(”)[E-(.-:)-.-:+l] 7

\/EO' n-

Setting this derivative equal to zero meuns setting
E'(n]‘n+] =0 (78)

That is, upon replacing (75).

1 A{In[n]- p)+1=0. (79)
O'
Rearranging, this becomes
lrl[n]—,u—i—o2 =0 (80)
and finally
e = n]su;lk = {f'“ {,‘(7] (8 l)

This is the most likely number of ExtraTerrestrial
Civilizations in the Galaxy.

How likely? To find the value of the probability
density function f,(n) corresponding to this
vulue of the mode, we must obviously replace (81)
mto (36). After a few rearrangements, one then
gets
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P

L TH e 2 (82}

.f,-\" (n [mdc) = ﬁ ¢

This is “how likely” the most likely number of
ExtraTerrestrial Civilizations in the Galaxy is, i.e.
it is the peak height in the lognormal probability
density function f,,(n).

Next to the mode, the median m (ref. |9]) is one
more statistical number used to charactenze any
probability  distribution. It 1s  detined as  the
independent  wvariahle  abscissa s such  that a
realizatiom of the random variable will take up a
value lower than wm with 50% probability or a value
higher than m with 50% probability again. In other
words, the median m splits up our probability
density 10 exactly two equally probable parts. Since
the probability of occurrence of the random event
cquals the arca under its density curve (i.c. the
definite integral under its density curve) then the
median m {of the lognormal distribution, in this
case) is defined as the integral upper limit ar:

| | (nfa gl |

I N - 1

o fn=J e T = (83
»[) T ( )‘ 0on Jlro 2 (83)

In order to find #11, we may not ditterentiate (83) with
respect to m, since the “precise”™ factor 4 on the
rnight would then disappear into a zero. On the
contrary, we may try to pertorm  the ohvious
substitution

2> (ln(n)— #)2

=—2 75 =20 (84)

e

ino the inegral (83) o reduce it w the fullowing
intcgral defining the error function erfli(z)

erf (x Fdz (83)

)=%lfﬁ'

Then, alter a few reductions that we skip for the sake
of brevity, the full equatiun (83) is turned inta

ro In(m)—;.r _ 1
2+Uj[7\/§o_ ]—2 (86)

that 15

ln(m)—,u
. LSEady Py 87
"f{ oo ] o

Since from the definition (83) one obviously has
ert{0)=0, (§7) becomies

]n(m]—,u
—==0 (88
V1o )

whenee finally

‘m:diau =m=e"| (89)

This is the median of the lognormal distribution of
N. In other words, this is the number of
ExtraTerrestrial civilizations in the Galaxy such
that, with 50% probability the acrual value of N will
be lower than this median, and with 50% probability
it will be higher.

In conclusion, we feel useful to summarize all the
equations that we derived about the random variable
N in the following Table 2.

Random variable

N = number of communicating ET civilizations in Galaxy

Probability distribution Lognormal

_{Jn{n'}—.u):
Probability density function fo (”): l ] ¢ 2a” (n>0)
n Jl2rea

-l

Mean value (Ny=ete?
Variance oy =" ¢ \e” _]]

(F"

Standard deviation oy =ere? e —1
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All the moments, 1.c. &-th muoment

Mode (= abscissa nf the lognurmal peak)

— M ’—rr:
Pnde = ”pcuk = ¢

Value of the Mode Peak

! e

f.-"(ﬁmuc)zi‘e €
’ 1 N2t o

Median (= fifty-fifty probability value for V)

median = 1 = e*

Skewness

—6ar 3o
L o

1

(eo_ - l). [e"o; +3e%7 +6e” +6)

Kurtpsis

dr”

2 Yo .
=¢ +2¢’" +32°7 -8

Expression of g 1in terms of the lower (a;) and upper

{h.) limits nf the Drake uniform inpul random
variables Dy

[In (arr )— ]]

u=Yir)=3 bt

i-l i-1 ' !

Expression of &7 in terms of the lower (a,) and upper
{(b;) limits of the Drake uwniform input random
variables D;

'M-J
“'IJ
Il

U a;b, ln )=In{a, )’
KR T

Tabte 2. Summary of the properties of the lognormal distribution that applies to the random variable N = number of

ET communicating civilizations in the Galaxy.

We wunt ta complete this scction about the
lognormal  prohability  density  functiom  (56) hy
finding out its numerie vaiues tar the inputs to the
Statistical Drake equation {3) listed in Table 1.

According to the CLT, the mean value gy to be
inscrted into the lognormal density (363 is given
{according to the second equation {(48)) by the sum of
all the mean values (Y{-), that is. by virtue of (31), by:

yi= i(yr_> _ ibr- [In (b;)' 1]—0,- [In(ar-)— I] . (0)

b, —,

=] =l

Upon replacing the 14 g, and 5, lisied in Table 1
into (90), the following mumeric mean value g is

found

i~ 7462176 (91)

Similarly, to get the numeric variance o’ one
must resort to the last of equations (48) and to (33):

—In{a; }f

b- -4, )7

(92)
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yiclding the tollowing rumeric variance & v he
mserted into the lognormal pdt (56)

o’ = 1938725 93)

whence the numeric standard deviation o

GRIE| o8

Upon replacing these two numeric values (84)
and (86} into the lognormal pdf (536), the latter 15
perfectly determined. It is plotted in Figure 4
hereafter ag the thin curve,

In other words, Figure 4 shows the lognormal
distribution for the number N of ExtraTerrestrial
Civilizations in the Galaxy derived from the Central
Limit Thearem as applied ta the Drake equatian
(with the input data listed in Table I).

We now like to peint out the most important
statistical propertics of this lognormal pdf:

1) Mean Value of N. This is given by cquation (60)
with grand o given by (91) and (94), respectively:
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(Ny=e ¢ ? =4589.559 | (95)

In other words, there are 4590 ET Civilizations in
the Galaxy according the Central Limit Theorem of
Statistics with the inputs of Table 1. This number
4590 is HIGHER than the 3500 foreseen by the
classical Drake equation working with sheer
numbers only, rather than with probability
distributions. Thus equation {(95) 1S GOOD FOR
NIEEWS FOR SETI, since it shows that the expected
number af ETs is HIGHER with an adeguate
statistical treatment than just with the too simple
Drake sheer numbers of (1),

2) Variance of N. The variance of the lognormal
distribution is given by {62) and turns out to be a
huge number:

oL =M (et’: —1): 125328623 . (96)

3) Standard deviation af N. The standard deviation
af the lognormal distributiem is given hy (63) and
Lurns oul 1o be:

X
[va
i 2

oy =t e T Ve —1=11195 | (97)
Again, this is GOOD NEWS FOR SETI. In fact,
such a high standard deviation means that N may
range from very low values (zero, theoretically, and

one since Humanity exists) up to tens of thousands
(4590+11195=15785 is (95)+(97).

4) Mode of N. The mode (= peuk abscissa) of the
lognormal distribution af N is given by (81), and has
a surprisingly low numeric value:

—efe T %250 | (98)

Movde = nprak

This 1s well shown in Figure 4: the mode peak 15 very
pronounced and close to the origin, but the right tail
15 high, and this means that the mean value of the
distribution 15 much  higher than the mode:
4590250,

44

5) Mediagn of N. The median {= fifty-fifty abscissa,
splitting the pdl in twa exactly equi-probable parts)
of the lognormal distribution of N 15 given by (39),
and has the numenc value:

P edian = e = 1740 (99)

In words, assunming the input values listed in Table 1,
we have exactly a 509 prabability that the actual
value of N i1y lower than 1740, and 50% that 1t is
higher than 1740,

7. COMPARING THE CL'T RESULTS
WITH THE NON-CLT RESULTS

The time is now ripe to compare the CLT-
based results about the lognormal distribution of N,
just described in Section 5, against the Non-CLT-
bused results obtained numencally in Section 3.3

To do so in a simple. visual way, let us plot on

the same diagram two curves:

)y The numeric curves appearing in Figure 2
and obtained alter luborious Fourier
translorm  calculalions in the complex
domain, and

2) The lognormal distribution (56} with
numeric # and ¢ given by (91) and (94)
respectively.

We see that the two curves are virtually coincident
for values of N larger than 1500. Thix is a
consequence of the law of large numbers, of which
the CLT is just one of the many facets.

Similarly it happens fur nutural lag of ¥, i.e. the
random variable ¥ af (3), that is plotted in Figure 5
both in its normal curve versian (thin curve) and in
its numeric versian, obtained via Fourier transforms
and already shown in Figure 2.

The canclusion ix simple: from now on we shall
dixcard forever the numeric calculations and we'll
stick only to the equations derived iy virtue af the
CLT, ie ta the lognarmal (56) and i
CORSEGUEnCEs.
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- PROBA BILITY DENSITY FUNCTION OF N

3-10

210 N

3100 \

/

Prob. density function of N
L

G 1000

2000

3000 4000

N = Number of ET Civilizations in Galaxy

Figure 4. Comparing Lthe two probability density functions of the random variable N found:
1) At the end of Section 3.3, in & purcly numeric way and without resorting to the CLT at all (thick curve) and
2)  Analytically by using the CLT and the relevant lognormal approximation (thin curve).

PROBABILITY DENSITY FUNCTION OT Y=In(N)

0.5

04 N

5 03

Z

S g2 -

2

E

[

€ ol /

) | [ \\
(j iIrn
0 ] 2 3 4 5 6 7 8 5 0 1l 12

Independent variable Y = In{N)

Figure 5. Comparing Lthe two probability density lunctions of the random variable Y=In(N) found:
13 At the end of Section 3.3, in & purcly numeric way and withoul resorting o the CLT at all (thick curve) and
2)  Analytically by using the CLT and the relevant normal (Gaussian) approximation (thin Gaussian curve).

8. DISTANCE OF THE NEAREST
EXTRATERRESTRIAL CIVILIZATION
AS A PROBABILITY DISTRIBUTION

As an application of the Statistical Drake
Eqguation developed in the previous sections of this
paper. we new wunt to consider the problem of
estimating the distance of the ExtraTerrestrial
Civilization nearest to us n the Galaxy. In all
Astrobiology textbooks (sce, for instance, ref, [10])

45

and In severul web sites, the solution to this
problem 1s reported with only slight differences in
the mathematical proefs among the various authors.
In the first of the coming two sections (section 7.1)
we derive the expression for this “ET_Distance”
(as we like to denote i) in the classical, non-
probabilistic way: in other words, this is the
classical. deterministic derivation. In the second
section (7.2) we provide the probabilistic
derivation, arising from our Statistical Drake
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Equation, of the corresponding probability density
function  fio yigme(F) - here » s the distance
between ws and the ncarest ET  civilization
assumed as the independent variable of its own
probability density [unction. The ensuing seclions
provide more malhematical details about (this
FET bistne (F) such as ity mean value, variance,
standard deviation, all central moments, mode,
median, cumulants, skewness and Kurtosis.

CLASSICAL, NON-PROBABILISTIC
DERIVATION OF THE INSTANCE OF THE
NEAREST ET CIVILIZATION

Cansider the Galactic Disk and assumc that:

1) The diameler of the Galaxy is (about) 100,000
light years. (abbreviated ly) iLe its radius,
Riiptary- 18 about 30,000 ly.

2} The thickness of the Galactic Disk at half-way
from its center, li;,. .., i8 about 16,000 ly.

Then

3) The velume of the Gualaxy may be
approximated as  the volume of the
corresponding cylinder, i.e.

v

Gty = ‘?TRQ h (IUU}

[N

4y Now consider the sphere around us having a
radius r. The volume of such as sphere is

4 (EI_Distance’
VOJH'_S.{)H('H' = E T [f] ( 111 )

In the last equation, we had to divide the distance
“ET_Distance™ between ourselves and the nearest
ET Civilizalion by 2 because we are now going to
make the unwarranted assumption that ell ET
Civilizations are equally space from each other in
the Galaxy! This is a crazy assumption, clearly,
and should he replaced by more scientifically-
grounded assumptions as soon a4s we know more
about our Galactic Neighbourheood. Al the moment,
however, this is the best guess that we cun make,
and so we shall take it for granted, although we are
aware that this i1s weak point in the reasoning.

Having thus assumed that ET Civilizations

are UNIFORMLY SPACED IN THE GALAXY,
we can write down this proportion:

46

V(;'m'u e _ V{Jm'_ Sphere ] ( | 02)
N 1

That 1s, upon replacing both (100} and (101) into
(102):

4 (L’[‘_Dismncc :
T R:‘:‘m'a.\'_\'h 3 d =

=2 , 103
N | (o

The orly unknown in the last equation is
ET_Distance, and yo we mav solve for it, thus
getting the:

(AVERAGE) DISTANCE BETWEEN ANY PAIR
OF NEIGHBOURING CIVILIZATIONS IN
THE GALAXY

A 6 R 2‘(: K h
ET_Distance = NGl < {104}

where the positive constant C is defined by

= 28845 light yeuars| (105)

Equations (104) and (105} are the starting point lor
our first application of the Statistical Drake
gquation, that we discuss in detail in the coming
sections of this paper.

PROBABILISTIC DERIVATION OF THE
PROBABILITY DENSITY FUNCTION FOR
ET DISTANCE

The prebability density function {pdf) yielding
the distance of the ET Civilization nearest to us m
the Galaxy and presented in this section, was
discovered by this author on September 5%, 2007.
He did not disclose it (o other scientists unltil the
SETI mweeting run by the fanwous mathenaticul
physicist and popular science authoer, Paul Davies,
at the “Beyond” Center of the University of
Arizona at Phoenix, on February 5-6-7-8, 2{KI8.
This mecting was also attended by SETI Institute
experts Jill Tarter, Seth Shostak, Doug Vakoch,
Tont Pierson and others. During this author’s talk,
Paul Davies suggested to call “the Maccone
distribution™ the new probability density function
that yields the ET_Distance and is derived in this
section.
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Let us go back to equation {104). Since N is
now a random variable (obeying the lognormal
distribution), it follows that the ET_Distance must
be a random variable as well. Hence it must have
sotmie unknown probability density function that
we denote by

-f[‘."['_l)lslunu: (F) ( 106}

where r is the new independent variable of such a
probability distribution t is denoted by r to
remind the reader that it expresses the three-
dimensional radial distance separating us from the
nearest ET civilization in a full spherical symmetry
of the space around us).

The question then is: whal is the unknown
probability distribution (106) of the ET_Distance?
We can answer this question upen making the two
formal substitutions

{ N o x (107)

ET_distance — v

into  the transformation law (8) for random
variables. As a consequence, (104) takes form

1
)‘zg(x}z%z(ﬁ.\' 3, {(1D8)
I

In order 1o lind the unknown probability density
JET Disine (7} + W€ nOW (o apply the rule (9) 1o
(108). First, notice that (108}, when inverted to
yield the various roots x,(y), yields a single real

root only

x(y)="+. (109)

Then, the summation in (9) reduces 0 one term
only.
Second, differentialing (108) one (inds

gup_%«z. (110)

Thus, the relevant absolute value reads

47

4

4
‘g'[‘\xz‘_%,x—}

_E !
3

x - (111)

Upon replacing (111} into (9), we then find

.
4 - -4
- ¢ -, clcty ool
AT B Lo R [ o
3 Iy 3y 3C

L (112)

This 1s the denomunator of {9). The numerator
simply 15 the lognormal probability  density
[unction {56) where the old independent variable x
must now be re-written in terms of the new
independent variable y by virtue of (109). By
doing so, we finally arrive at the new probability
density function f,(y)

. 3¢t |
.fy()'): PR

l
- - e’
¥y Vro

3

Rearranging and replacing y by 7, the linal lorm
is:

e ‘2..(HM

fET_u'.m....c {f’) =

Y]
I

o

)

Now. just replace C in (113} by virtue of (105).
Then:

We have discovered the probability density
Junction yielding the probability of finding the
nearest ExtraTerrestrial Civilization in the
Galaxy in the spherical shell between the
distances r and r+dr from Eqrth:

z 1 - 24"

fET_Di.wmncc (r) =

| e

(114)
holding for r=0.

STATISTICAL PROPERTIES OF THIS
DISTRIBUTION
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We now want to study this probabibty
distribution in detail. Our next questions are:

1) What is its mean value?

2y What arc its varance and  standard
deviation?

3) Whalt are its moments to any higher order?

4y What are tts cumulants?

5)  What are its skewness and kurtosig?

6) What are the coordinates of its peak, i.e.
the mode (peak abscissay and its ordinate?

7y What is its median?

The first three points n the list are all covered
by the following theorem: all the moments of {1 [3)
are given by ¢here k£ is the generic and non-
negative integer exponent, t.e. £ =0,1,2,3,..=0)

<E'T_Dista11cek> - v[(} rﬁ" ' -fET_Djslunuz (’) dr

—Che e (115)

To prove this result, one first transforms the above
integral by virtue of the substitution

3
1{%}:{;. (t16)

Then the new integral in z is then seen to reduce to
the known Gaussian integral (53} and, after several
reductions that we skip for the sake of brevity.
(113 foltows from (53). In other words, we have
proven that

i AT
- L

<ET_Distzmcck>=C;" e e 18| (117}

Upon  selling &= into (LH17), the
normalization condition (0r fry py e (7} fottows

[ 75t e r)r =1 (118)

48

Upon setting k=1 into (117), the important
mean value of the random variable ET_Distance
is found

FLN

(ET_Distance) = Ce * ¢8|, (119

Upon setting & =2 into (117), the mean value of
the square of the random variable ET_Distance 1s
found

] S

- : o
<E§T_Dis;tanceg>:C2 ¢ ¥ ev . {(120)

The wvariance of ET_Distance now follows from
the lasl two formulae wilh a few reductions:

. . 2
OET Distane = <ET_D13tance 2> —(ET_Distance)

e —1|l  (122)

The squure rool of this is the important
standard deviation of the ET_Distance rardom
variable

. p
T o

— N ) 9 3
OET Distne = C € 7 € ¢ L. {(123)

The third mement is obtained upon setting
k=3 mto (Lt

T | BN

{ET_Disrance“) —Ci e e (124)

Finally, upon setting k=4 into (117), the fourth
moment of ET_Distance is found
b3

iy Dot

<ET_Dis[ance4>:C4e_-‘ ev . {125
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Our next goal is to find the cumulants of the
ET_Distance. In principle, we could compute all
the cumulants X, from the generic i-th moment

,u,' by virtue of the recursion formula {see ref. [8])

) i-1 1 .
Ki=u- [; _]] K, i, . (126)

k-l

In practice, however, here we shall confine
oursclves to the computation of the first four
cumulants because they only are required to find
the skewness and kurtosis of the distribution {113).
Then, the [irst four cumulants in terms of the first
four moments read:

K, =
K'EI = _K]. \ (]2?)
Ky=p: - 3K Ky - K,
K,=u,-4K K;-3K; -6K, K —-K}.
These equations yield, respectively:
u oo
K =Ce *el?, (128)
LT
Ky=C?e Ye?]e? -1]. (129)
(T_J S at
Ki=Cle™le? —3¢18 1260 | (130)
K, = (131}
duf e St 4ot o 27

- .
=C"e Ye? —d4e? -3¢ +12eF —Ge ?

From these we derive the skewness

49

o Se a
e le? -3¢ !B 4260

.(132)
and the kurtosis
K, o2
4q =¢ Y 4+2¢? +3e¢ Y -6, {133)
(K, )

Next we want to find the mode of this
distribution, Le. the abscissa of its peak. To do so,
we must first compute the derivative of the
probability density function fiy pyiane(7) of (113),
and then set it equal (o zero. This derivative is
actually the derivative of the ratio of two functions
of #, as its plainly appears from (113). Thus, let us
set for a moment

{In|:(?: :| ) J“'J_-
Er)-~ 4 (134)

where “E” stands for “exponent,” Upon

differentiating,
one gets
E(r)= L ol < —u -L‘C}»(—BJ‘;'_4
PP 3 3
3
-

:%-{|n|i§:|—,u]'(—3)l‘. (135)

But the probability density function (113) now
reads

3 e_ﬁ{"}

fli'l'_l)isluuu: (}‘) = mo_ ’ I3

(136)

So that its derivative is

dl'fET Distunml(r) _ 3

dr ﬂa‘ r?
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3 e IE) ]
= ' _ ‘ (137)
V2ro ’”

Setting this denvative equal to zerp means sctting
E{r)r+1=0 (138)

That 1s, upon replacing {135) into (138), we get

Iﬁ -(ln ¢
o

{—f:}—p}(—_ﬁ]l-r+]=0 (139
: v
L

r

Rearranging, this becomes

2 N
_3{]]{&‘}#}%2 -0 (140)
-

that is
c? -
—3ln—,1 +3u+0 =0 (141
I
whence
In[£}=£+£ (142)
r 3 9
and finally
i -
Fode = 'rpczlk =Ce *e ¥ | (143)

This is the most likely ET_Distance from Earth.

How likely ?

To find the value of the probability density
function £y 1yiume (7) corresponding to this value
ol the mode, we musl obviously replace () into ().
After a few rearrangements, which we skip for the
suke of brevity, one gets

Peuk Value of fl-','l'_l]i.\lauuc(r) = fli'l'_l)i.\;luuu: ('rmsdc)

1
i a

=—F— ¢t %,

(.'\/Eo'
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.{144)
This is the peak height in the pdf fiy 1yigune (5

Next w the mode, the median m (el [9]) is one
more  statistical nunther used to characterize any
probability  distribution. It is  defined us  the
independent variable abscissa m  such that a
realization of the random variable will ke up a
value lower than m with 50% probability or a value
higher than m with 50% probability again. In pther
words, the median s sphts up our probability
density in exactly two equally probable parts. Since
the probability ol pecurrence of the random ewernt
cquals the area under its density curve (e the
definite integral under its density curve) then the
median m (of the lpgnormal distribution. in this
case) 1s defined as the integral upper limt nr:

)

. 1
a -rfET Iyistane (-“)d!‘ - E

{145)

Upon replacing (113), this hecomes

w3 e |
S - -, 146
j[ ¢ . (146)

v \/EO’

In vrder to tindm, we may not differentiate {146)
with respect to m, since the “precise” lactor 2 on the
right would then disappear int a zern. On the
contrary, we may (ry wn perform  the obvibus
substitutinn

TE=—-— =zl {147)

into the intcgral (146) to reduce it to the following
integral (85) defining the error function ert(z). Then,
after a few reductipns that we leave to the reader as
an exercise, the full cquation (145). defining the
median, is turned into the corresponding cguatipn
involving the error function g#fx) as defined by (83):
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ET_Distance between any two neighboring ET
Civilizatians in Galaxy assuming they are UNIFORMLY

Random variable
distributed throughput the whale Galaxy velume.
Prohability distributipn Unnamed (Paul Davies suggested “Maceime distribution™)
( iz Rt::u.l';.'\'. Aiaetonn h
Inj 4 -
-
Probability density function 3 l . o .
. - ) T
.fET_Dib[&llllc{r) == nE
v 2ro
{Defining the positive numeric constant €) C =36 Rc;um.\_\- hGuM.\_\- = 28845 light years
_H o
Mean value (ET_Dislancc) —(Ce 3elt
2 o &
. 2 L2 T H [t [
Variance Oir Distme =& ¢ © €7 e =1
M - at
Standard deviation PN R T g
TET Diste Ce ¢ € l
4 Y
o . ‘ RS
All the moments, 1.¢. &-th mument <ET_Dlstance > =(CFeg 3¢ I8
_H _0'2
Mode (= abscissa of the probability density function e = ook = Ce e ¥
peak)
Peak Value of J(-ET_Dislume U) =
. At l!'F'1
Value of the Mode Peak o, ] B 3 3%
= .fli'l'_l}isluuu: (',m‘dc) - en e
C2mo
i)
Median (= ffty-fift robahility  value  {Dr . L
no( yuiy b yov median =m = Ce 3
ET_Distance)
- Sl o’ R

e e =318 1 2p0

Kz
3

Skewness
3
S St P S P 2157 3

(ki)
Cle? —4¢ % -3¢ 9 +12¢3 —6¢ ¥

4 o 247
Kurtosis (1:4)1 —e¢ 9 +2¢3 43¢ 9 -6
Expression of zin terms of the lower (¢} and upper < . Lp[in(b,)=1]-a[In(g, )-1]
{b3) limits of the Drake uniform input random #= Z< i Z b —a,
variahles ), -t -]
b [In [b,- ]— In (a, ]]2

. . . . . 7 7
Expression of o2 in terms of the Tower {a,) and upper o = E :O_z _2
(H:) limits of the Drake uniform input random ¥ (b- — ]?
‘ ! !
variables 1;

Table 3. Summary of the properties of the prohability distribution that applies to the random variable ET_Distance
yielding the {average) distance between any two neighboring communicating civilizations in the Galaxy.
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&l
Inf —|-u
LR B K T (148)

—

that 15

C3
ln{ . } - i
n

N,

=0 (149}

Since from the definition {147) one obvicusly has
ert(0)=0, (149) yields

C*
In| —|-#
m

V2o

=0 (150)

whence finally

M
median =m =C¢ | (151}

This is the median of the logrormal distribution of
N, In other words, this is the number aof
ExtraTerrestrial civilizations in the Galaxy such
that, with 50% probability the actual value of N will
be lower than this median, and with 50% probability
it will be higher.

In conclusion, we feel useful to summarize all the
equations that we derived about the random variable
N in the tellowing Table 2.

NUMERICAL EXAMPLE OF THE
ET_DISTANCE DISTRIBUTION

In this section we provide a numerical
example of the analytic calculations carried on so
[ar.

Consider the Druke Equation values reported
in Table 1. Then, the graph of the corresponding
probability density function of the nearest
ET_Distance. fer piame (7). 18 shown in Figure 6.

DISTANCE OF NEAREST ET_CIVILIZATION

56310

45.00Y

/ ™\

338107

N

Probability density function { [Ancters}

225.16Y /

AN

1131070

\\

0 500 1000 1300 2000

2500 3000 3500 4000 4500 5004

ET_Distunce frim Earth (light years)

Figure 6. This is the probability of finding the nearest ExtraTerrvestrial Civilization at the distance r from
Earth (in light ycars) if the values assumed in the Drake Equation arce those shown in Table 1. The relevant
probability density function fir piaune () 18 given by equation (113). Tts mode (peak abscissa) cquals 1933

light years. but its mean value is higher since the curve has a high tail on the right: the mean value equals in
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fact 2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FOR
SETI, inasmuch as the nearest ET Civilization might lie at just 1 sigma = 2670-1309 = 1361 light years

Srom us,

From Figure 6, we see thal the probability of
linding ExtraTerrestrials is practically zero up (o a
distance of about 500 light years from Earth. Then
it starts increasing with the increasing distance
from Earth, and reaches its maximum at

] o’

Froge = Fpeat =Ce H e ¥ =1933 light years|. (152)

nuie

This is the MOST LIKELY VALUE of the
distance ut which we can expect to find the
nrearest ExtraTerrestrial civilization.

It is mot, however, the mean value of the
probability distribution (113} for fi:; e (7). In
fact, the probability density {L13}) has an infinite
tail on the right, as clearly shown in Figure 6, and
hence its mean value must be higher than its peak
value, As given by (119), its mean value is

2
HoF

=Ce * e =2670 light vears| (153)

"Trm'rrn_\'(rfrr('

This is the MEAN (value of the) DISTANCE
at which we can expect to find ExtraTerrestrials.

After having found the above two distances (1933
and 26701 light years, respectively}), the next natural
question that arises 1s: “what 1s the range, forth and
back around the mean value ol the distance, within
which we can expect to find ExtraTerrestrials with
“the highest hopes ?.” The answer to this question
is given by the notion of standard deviation. that
we already found to be given by (123}

o

D'"
—Ce ‘e18V. Y _1 » o
bt pistine =0 € € € 1 = 1309 light years|.

L (154)

More precisely, this is the so called 1-sigma
(distance) level, Probability theory then shows that
the nearest ExtraTerrestrial civilization is expected
to he located within this range, i.e. within the two
distances of (2670-1309) = 1361 light years and
(2670+1309) = 3979 light vears, with probabihty
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given by the integral of  fir pigae(r) taken in

between these two lower and upper limits, that is:

397 Migheyears
’[I fl:"l' stane (") dr=0.75=75% (155)

36 ightyears

In plain words: with 75% probabilily, the nearest
ExtraTerrestrial civilization is located in between
the distances of 1361 and 3979 light years from us,
having assumed the input values to the Drake
Equation given by Table 1. Ii we change those
input values, then all the numbers change again.

Y. THE “DATA ENRICHMENT
PRINCIPLE™ AS THE BEST CLT
CONSEQUENCE UPON THE
STATISTICAL DRAKE EQUATION
(ANY NUMBER OF FACTORS
ALLOWED)

As u fitting climax to all the statistical
equations developed so far, let us now state our

“DATA ENRICHMENT PRINCIPLE,” It simply stutes thut

“The Higher the Nwmber of Factors in the
Statistical Drake equation, The Better,”

Put in this simple way, it simply looks like a
new way of saying that the CLT lets the random
variable ¥ approach the normal distrihution when
the numher of terms in the sum {4) approaches
infinity. And this is the case, indeed. However, our
“Data Enrichment Principle” has more praofound
methodological conseguences that we cannot
explain now, but hope to describe more precisely
in One or more Coming papers.

CONCLUSIONS

We have sought to extend the classical Drake
equation to let 1t encompass Statistics and
Probahility.

This approach appears ta pave the way to
[uture, more profound investigalions intended not
only to associate “error bars™ to each factor in the
Drake equation, but especially to increase the
number of factors themselves. In fact, this seems to
be the only way to incorporate into the Drake
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gquation more and more new scientific information
as soon as it becomes available. In the leng run,
the Statistical Drake equation might just become a
huge computer code, growing up in size and
especially in the depth of the scientific information
it contained. It would thus be Humanity's first
“Encyclopacdia Galactica,”

Unfortunately, to extend the Drake equation to
Statistics, it was necessary to use a mathematical
apparatus that is more sophisticated than just the
simple product of seven numbhers,

When this author had the honour and privilege
to present his results at the SETI Institute on April
11", 2008, n front of an audience also including
Professor Frank Drake, he felt he had to add these
words: “My apologies, Frank, for disrupting the
beautiful simplicity ol yvour equation,”
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