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An Introduction to the Statistical Drake Equation 

1. Introduction 

SETI (an acronym for "Search for Extraterrestrial Intelligence") is a relatively 
new branch of scientific research, having begun only in 1959. Its goal is to 
ascertain whether alien civilizations exist in the universe, how far from us 
they exist, and possibly how much more advanced than us they may be. 

As of 2009, the only physical tools we know that could help us get in touch 
with aliens are the electromagnetic waves an alien civilization could emit and 
we could detect. This forces us to use the largest radiotelescopes on Earth for 
SETI research, because the higher our collecting area of electromagnetic 
radiation is, the higher our sensitivity is (that is, the farther in space we can 
probe). Yet, even by using the largest radiotelescopes on Earth (the 310-meter 
dish at Arecibo, for instance), we cannot search for aliens beyond, say, a few 
hundred light years away. This is a very, very small amount of space around us 
within our galaxy, the Milky Way, that is about 100,000 light years in diameter. 
Thus, current SETI can cover only a very tiny fraction of the galaxy, and it is 
not surprising that in the past 50 years of SETI searches, NO extraterrestrial 
civilization was discovered. Quite simply, we did not get far enough! 

This demands the construction of much more powerful and radically new 
radiotelescopes. Rather than big and heavy metal dishes, whose mechanical 
problems hamper SETI research too much, we are now turning to "software 
radiotelescopes," where a large number of small dishes (ATA = Allen 
Telescope Array, and ALMA = Atacama Large Millimeter/submillimeter Array) 
or even just of simple dipoles (LOFAR = Low Frequency Array) using state-of-
the-art electronics and very-high-speed computing can outperform the 
classical radiotelescopes in many regards. The final dream in this field is the 
SKA (= Square Kilometer Array), currently being designed and expected to be 
completed around 2020. 

2. The Key Question: How Far are They? 

But still, the key question remains: how far are they? 

Or, more correctly, how far do we expect the NEAREST extraterrestrial civilization to be 
from the Solar System in the galaxy? 

This question was first faced in a scientific manner back in 1961 by the same scientist 
who also was the first experimental SETI radio astronomer ever: the American, Frank 
Donald Drake (born 1930). He first considered the shape and size of the galaxy where 
we are living: the Milky Way. This is a spiral galaxy measuring some 100,000 light 
years in diameter and some 16,000 light years in thickness of the Galactic Disk at half-
way from its center. That is: 

The diameter of the galaxy is (about) 100,000 light years, (abbreviated ly) i.e., its 
radius, Rad „,, , is about 50,000 ly. 
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The thickness of the Galactic Disk at half-way from its center, h,„1 , is about 16,000 ly. 

The volume of the galaxy may then be approximated as the volume of the 
corresponding cylinder, i.e. 

176„Ir = RLIan h  • 	 ( 1) 

Now consider the sphere around us having a radius r. The volume of such a sphere is 

4 
V 0„ 0  u sphere  

3 
(D1DMM“)  

2 
(2)  

In the last equation, we had to divide the distance "ET Distance" between ourselves 
and the nearest ET civilization by 2 because we are now going to make the 
unwarranted assumption that all ET civilizations are equally spaced from each 
other in the galaxy! This is a crazy assumption, clearly, and should be replaced by 
more scientifically-grounded assumptions as soon as we know more about our Galactic 
Neighborhood. At the moment, however, this is the best guess that we can make, and 
so we shall take it for granted, although we are aware that this is a weak point in the 
reasoning. 

Furthermore, let us denote by N the total number of civilizations now living in the 
galaxy, including ourselves. Of course, this number N is unknown. We only know that 
N 	since one civilization does at least exist! 

Having thus assumed that ET civilizations are UNIFORMLY SPACED IN THE GALAXY, we 
can then write down the proportion: 

11Golit  

  

(3)  

   

That is, upon replacing both (1) and (2) into (3): 

4 T r ET_Dist :Ince )3  
h- RZ0  h 3 L 	2 	)  (4)  

  

The last equation contains two unknowns: N and ET Distance, and so we don't know 
which one it is better to solve for. 

However, we may suppose that, by resorting to the (rather uncertain) knowledge that 
we have about the Evolution of the galaxy through the last 10 billion years or so, we 
might somehow compute an approximate value for N. 

Then, we may solve (4) for ET_Distance thus obtaining the (AVERAGE) DISTANCE 
BETWEEN ANY PAIR OF NEIGHBORING CIVILIZATIONS IN THE GALAXY (DISTANCE 
LAW) 
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where the positive constant C is defined by 

C = 3‘16 	lic1„„ 28845 light years . 	 (6) 

Equations (5) and (6) are the starting point to understand the origin of the Drake 
equation that we discuss in detail in Section 3 of this paper. 

Let us just complete this section by pointing out three different numerical cases of the 
distance law (5): 

• We know that we exist, so N may not be smaller than 1, i.e., N I . Suppose then 
that we are alone in the galaxy, i.e., that N=1. Then the distance law (5) yields as 
distance to the nearest civilization from us just the constant C, i.e., 28,845 light 
years. This is about the distance in between ourselves and the center of the galaxy 
(i.e. the Galactic Bulge). Thus, this result seems to suggest that, if we do not find 
any extraterrestrial civilization around us in these outskirts of the galaxy where we 
live, we should look around the Galactic Center first. And this is indeed what is 
happening, i.e., many SETI searches are actually pointing the antennas towards the 
Galactic Center, looking for beacons (see, for instance ref. [1]). 

Suppose next that N=1000, i.e. there are about a thousand extraterrestrial 
communicating civilizations in the whole galaxy right now. Then the distance law (5) 
yields an average distance of 2,885 light years. This is a distance that most 
radiotelescopes in Earth may not reach for SETI searches right now: hence the need 
to build larger radiotelescopes, like ALMA, LOFAR and the SKA. 

Suppose finally that N=1000000, i.e., there are a million communicating civilizations 
now in the galaxy. Then the distance law (5) yields an average distance of 288 light 
years. This is within the (upper) range of distances that our current radiotelescopes 
may reach for SETI searches, and that justifies all SETT searches that have been 
done so far in the first fifty years of SETI (1960-2010). 

In conclusion, interpolating the above three special cases of N, we may say that the 
distance law (5) yields the following key diagram of the average ET distance vs. the 
assumed number of communicating civilizations, N, in the galaxy right now (Figure 1): 

6 
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Average DISTANCEof the nearest El civilization vs, the ASSUMED NUMBER of ET civdizations in the Oak 
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Figure 1. DISTANCE LAW; i.e., the Ave age Distance (plot along the vertical axis in light years) Versus 
the NUMBER of Communicating Civilizations ASSUMED to Exist in the Galaxy Right Now 

3. Computing N By Virtue of the Drake Equation (1961) 

In the previous section, the problem of finding how close the nearest ET civilization may 
be was "solved" by reducing it to the computation of N, the total number of 
extraterrestrial civilizations now existing in this galaxy. In this section the famous 
Drake equation is described, that was proposed back in 1961 by Frank Donald Drake 
(born 1930) to estimate the numerical value of N. We believe that no better 
introductory description of the Drake equations exists other than the one given by Carl 
Sagan in his 1983 book "Cosmos" (ref. [2]), in its turn based on the famous TV series 
"Cosmos." So, in this paragraph we report Carl Sagan's description of the Drake 
equation unabridged. 

"But is there anyone out there to talk to? With a third or a half a trillion stars in our 
Milky Way galaxy alone, could ours be the only one accompanied by an inhabited 
planet? How much more likely it is that technical civilizations are a cosmic 
commonplace, that the galaxy is pulsing and humming with advanced societies, and, 
therefore, that the nearest such culture is not so very far away - perhaps transmitting 
from antennas established on a planet of a naked-eye star just next door. Perhaps 
when we look up at the sky at night, near one of those faint pinpoints of light is a world 
on which someone quite different from us is then glancing idly at a star we call the Sun 
and entertaining, for just a moment, an outrageous speculation. 
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UNCLASSIFIED/ / MiliFSIFFilatoll•WISFSID1110A 



UNCLASSIFIED/ /ailitairmia 

It is very hard to be sure. There may be several impediments to the evolution of a 
technical civilization. Planets may be rarer than we think. Perhaps the origin of life is 
not so easy as our laboratory experiments suggest. Perhaps the evolution of advanced 
life forms is improbable. Or it may be that complex life forms evolve more readily, but 
intelligence and technical societies require an unlikely set of coincidences - just as the 
evolution of the human species depended on the demise of the dinosaurs and the ice-
age recession of the forests in whose trees our ancestors screeched and dimly 
wondered. Or perhaps civilizations arise repeatedly, inexorably, on innumerable planets 
in the Milky Way, but are generally unstable; so all but a tiny fraction are unable to 
survive their technology and succumb to greed and ignorance, pollution and nuclear 
war. 

It is possible to explore this great issue further and make a crude estimate of N, the 
number of advanced civilizations in the galaxy. We define an advanced civilization as 
one capable of radio astronomy. This is, of course, a parochial if essential definition. 
There may be countless worlds on which the inhabitants are accomplished linguists or 
superb poets but indifferent radio astronomers. We will not hear from them. N can be 
written as the product or multiplication of a number of factors, each a kind of filter, 
every one of which must be sizable for there to be a large number of civilizations: 

Ns, the number of stars in the Milky Way galaxy. 

fp, the fraction of stars that have planetary systems. 

ne, the number of planets in a given system that are ecologically suitable for life. 

fl, the fraction of otherwise suitable planets on which life actually arises. 

fi, the fraction of inhabited planets on which an intelligent form of life evolves. 

fc, the fraction of planets inhabited by intelligent beings on which a communicative 
technical civilization develops. 

fL, the fraction of planetary lifetime graced by a technical civilization. 

Written out, the equation reads 

N = NS • -) (7) 

All of the f's are fractions, having values between 0 and 1; they will pare down the 
large value of Ns. 

To derive N we must estimate each of these quantities. We know a fair amount about 
the early factors in the equation, the number of stars and planetary systems. We know 
very little about the later factors, concerning the evolution of intelligence or the lifetime 
of technical societies. In these cases our estimates will be little better than guesses. I 
invite you, if you disagree with my estimates below, make your own choices and see 
what implications your alternative suggestions have for the number of advanced 
civilizations in the galaxy. One of the great virtues of this equation, due to Frank Drake 
of Cornell, is that it involves subjects ranging from stellar and planetary astronomy to 
organic chemistry, evolutionary biology, history, politics and abnormal psychology. 
Much of the Cosmos is in the span of the Drake equation. 
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We know Ns, the number of stars in the Milky Way galaxy, fairly well, by careful counts 
of stars in a small but representative region of the sky. It is a few hundred billion; some 
recent estimates place it at 4 x 1011. Very few of these stars are of the massive short-
lived variety that squander their reserves of thermonuclear fuel. The great majority 
have lifetimes of billions or more years in which they are shining stably, providing a 
suitable energy source for the energy and evolution of life on nearby planets. 

There is evidence that planets are a frequent accompaniment of star formation: in the 
satellite systems of Jupiter, Saturn and Uranus, which are like miniature solar systems; 
in theories of the origin of the planets; in studies of double stars; in observations of 
accretion disks around stars; and is some preliminary investigations of gravitational 
perturbations of nearby stars.' Many, perhaps even most, stars may have planets. We 
take the fraction of stars that have planets, fp, as roughly equal to 1/3. Then the total 
number of planetary systems in the galaxy would be Ns fp — 1.3 x 1011  (the symbol — 
means "approximately equal to"). If each system were to have about ten planets, as 
ours does, the total number of worlds in the galaxy would be more than a trillion, a vast 
arena for the cosmic drama. 

In our own solar system there are several bodies that may be suitable for life of some 
sort: the Earth certainly, and perhaps Mars, Titan and Jupiter. Once life originates, it 
tends to be very adaptable and tenacious. There must be many different environments 
suitable for life in a given planetary system. But conservatively we choose ne=2. Then 
the number of planets in the galaxy suitable for life becomes IVs fp ne — 3 x 1011. 

Experiments show that under the most common cosmic conditions the molecular basis 
of life is readily made, the building blocks of molecules able to make copies of 
themselves. We are now on less certain grounds; there may, for example, be 
impediments in the evolution of the genetic code, although I think this is unlikely over 
billions of years of primeval chemistry. We choose fl — 1/3, implying a total number of 
planets in the Milky Way on which life has arisen at least once as Ns fp ne fl 1 x  1011,  

a hundred billion inhabited worlds. That in itself is a remarkable conclusion. But we are 
not yet finished. 

The choices of fi and fc are more difficult. On the one hand, many individually unlikely 
steps had to occur in biological evolution and human history for our present intelligence 
and technology to develop. On the other hand, there must be quite different pathways 
to an advanced civilization of specified capabilities. Considering the apparent difficulty 
in the evolution of large organisms, represented by the Cambrian explosion, let us 
choose fix fc = 1/100, meaning that only 1 per cent of planets on which life arises 
actually produce a technical civilization. This estimate represents some middle ground 
among the varying scientific options. Some think that the equivalent of the step from 
the emergence of trilobites to the domestication of fire goes like a shot in all planetary 
systems; others think that, even given ten or fifteen billion years, the evolution of a 
technical civilization is unlikely. This is not a subject on which we can do much 
experimentation as long as our investigations are limited to a single planet. Multiplying 

' Carl Sagan was writings these lines back in the 1970's, when no extrasolar planets had been discovered yet. The 
first such discovery occurred in 1995, when Michel Mayor and Didier Queloz, working at the "Obseryatoire de Haute 
Provence" in France, discovered the first extrasolar planet orbiting the nearby star 51 Peg. This first extrasolar 
planet was hence named 51 Peg B. Many more extrasolar planets were discovered around nearby stars ever since. 
As of April 2009, 347 extrasolar planets (exoplanets) are listed in the Extrasolar Planets Encyclopaedia. 

9 
UNCLASSIFIED/ Alert erne•Tni 11C= rum v  



UNCLASSIFIED/ /alitairai 

these factors together, we find Ns fp ne fl fi fc - 1 x 109, a billion planets on which 
technical civilizations have arisen at least once. But that is very different from saying 
that there are a billion planets on which technical civilizations now exist. For this we 
must also estimate fL. 

What percentage of the lifetime of a planet is marked by a technical civilization? The 
Earth has harbored a technical civilization characterized by radio astronomy for only a 
few decades out of a lifetime of a few billion years. So far, then, for our planet fL is less 
than 1/108, a millionth of a percent. And it is hardly out of the question that we might 
destroy ourselves tomorrow. Suppose this were a typical case, and the destruction so 
complete that no other technical civilization - of the human or any other species - were 
able to emerge in the five or so billion years remaining before the Sun dies. Then Ns fp 
tie fl fi fc fL - 10, and, at a given time there would be only a tiny smattering, a handful, 
a pitiful few technical civilizations in the galaxy, the steady state number maintained as 
emerging societies replace those recently self-immolated. The number N might be even 
as small as 1 if civilizations tend to destroy themselves soon after reaching a 
technological phase; there might be no one for us to talk with but ourselves. And that 
we do but poorly. Civilizations would take billions of years of tortuous evolution, and 
then snuff themselves out in an instant of unforgivable neglect. 

But consider the alternative, the prospect that at least some civilizations learn to live 
with technology; that the contradictions posed by the vagaries of past brain evolution 
are consciously resolved and do not lead to self destruction; or that, even if major 
disturbances occur, they are reveres in the subsequent billions of years of biological 
evolution. Such societies might live to a prosperous old age, their lifetimes measured 
perhaps on geological or stellar evolutionary time scales. If 1 percent of civilizations can 
survive technological adolescence, take the proper fork at this critical historical branch 
point and achieve maturity, then fL - 1/100, N 108, and the number of extant 
civilizations in the galaxy is in the millions. Thus, for all our concern about the possible 
unreliability of our estimates of the early factors in the Drake equation, which involve 
astronomy, organic chemistry and evolutionary biology, the principal uncertainty comes 
to economics and politics and what, on Earth, we call human nature. It seems fairly 
clear that if self-destruction is not the overwhelmingly preponderant fate of galactic 
civilizations, then the sky is softly humming with messages from the stars. 

These estimates are stirring. They suggest that the receipt of a message from space is, 
even before we decode it, a profoundly hopeful sign. It means that someone has 
learned to live with high technology; that it is possible to survive technological 
adolescence. This alone, quite apart from the contents of the message, provides a 
powerful justification for the search for other civilizations. 

4. The Drake Equation is Over-Simplified 

In the nearly fifty years (1961-2009) elapsed since Frank Drake proposed his equation, 
a number of scientists and writers tried to find out which numerical values of its seven 
independent variables are more realistic in agreement with our present-day knowledge. 
Thus there is a considerable amount of literature about the Drake equation nowadays, 
and, as one can easily imagine, the results obtained by the various authors largely 
differ from one another. In other words, the value of N, that various authors obtained 
by different assumptions about the astronomy, the biology and the sociology implied by 
the Drake equation, may range from a few tens (in the pessimist's view) to some 
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million or even billions in the optimist's opinion. A lot of uncertainty is thus affecting our 
knowledge of N as of 2010. In all cases, however, the final result about N has always 
been a sheer number, i.e., a positive integer number ranging from 1 to millions or 
billions. This is precisely the aspect of the Drake equation that this author regarded as 
"too simplistic" and improved mathematically in his paper #IAC-08-A4.1.4, entitled 
"The Statistical Drake Equation" and presented on October 1St, 2008, at the 59th 
International Astronautical Congress (IAC) held in Glasgow, Scotland, UK, September 
29th thru October 3'6, 2008. That paper is attached herewith as Appendix B. Newcomers 
to SETI and to the Drake equation, however, may find that paper too difficult to be 
understood mathematically at a first reading. Thus, I shall now explain the content of 
that paper "by speaking easily." I thank the reader for his or her attention. 

5. The Statistical Drake Equation 

We start by an example. 

Consider the first independent variable in the Drake equation (7), i.e., Ns, the number 
of stars in the Milky Way galaxy. Astronomers tell us that approximately there should 
be about 350 millions stars in the galaxy. Of course, nobody has counted (or even seen 
in the photographic plates) all the stars in the galaxy! There are too many practical 
difficulties preventing us from doing so: just to name one, the dust clouds that don't 
allow us to see even the Galactic Bulge (i.e. the central region of the galaxy) in the 
visible light (although we may "see it" at radio frequencies like the famous neutral 
hydrogen line at 1420 MHz). So, it doesn't make any sense to say that Ns = 350 x 106, 
or, say (even worse) that the number of stars in the galaxy is (say) 354,233,321, or 
similar fanciful exact integer numbers. That is just silly and non-scientific. Much more 
scientific, on the contrary, is to say that the number of stars in the galaxy is 350 million 
plus or minus, say, 50 millions (or whatever values the astronomers may regard as 
more appropriate, since this is just an example to let the reader understand the 
difficulty). 

Thus, it makes sense to REPLACE each of the seven independent variables in the Drake 
equation (7) by a MEAN VALUE (350 millions, in the above example) PLUS OR MINUS A 
CERTAIN STANDARD DEVIATION (50 millions, in the above example). 

By doing so, we have made a great step ahead: we have abandoned the too-simplistic 
equation (7) and replaced it by something more sophisticated and scientifically more 
serious: the STATISTICAL Drake equation. In other words, we have transformed the 
classical and simplistic Drake equation (7) into an advanced statistical tool for the 
investigation of a host of facts hardly known to us in detail. In other words still: 

• We replace each independent variable in (7) by a RANDOM VARIABLE, labeled 
p, (from Drake). 

• We assume that the MEAN VALUE of each D, is the same numerical value previously 

attributed to the corresponding independent variable in (7). 

• 	But now we also ADD A STANDARD DEVIATION 	on each side of the mean value, 

that is provided by the knowledge gathered by scientists in each discipline 
encompassed by each D. . 

11 
UNCLASSIFIED// 09&&14.ef 



UNCLASSIFIED/ 

Having so done, the next question is: 

How can we find out the PROBABILITY DISTRIBUTION for each 0 ? 

For instance, shall that be a Gaussian, or what? 

This is a difficult question, for nobody knows, for instance, the probability distribution of 
the number of stars in the galaxy, not to mention the probability distribution of the 
other six variables in the Drake equation (7). 

There is a brilliant way to get around this difficulty, though. 

We start by excluding the Gaussian because each variable in the Drake equation is a 
POSITIVE (or, more precisely, a non-negative) random variable, while the Gaussian 
applies to REAL random variables only. So, the Gaussian is out. Then, one might 
consider the large class of well-studied and positive probability densities called "the 
gamma distributions," but it is then unclear why one should adopt the gamma 
distributions and not any other. The solution to this apparent conundrum comes from 
Shannon's Information Theory and a theorem that he proved in 1948: "The probability 
distribution having maximum entropy (= uncertainty) over any FINITE range of real 
values is the UNIFORM distribution over that range," This is proven in Appendix A of the 
present document. 

So, at this point, we assume that each of the seven 0 in (7) is a UNIFORM random 

variable, whose mean value and standard deviation is known by the scientists working 
in the respective field (let it be astronomy, or biology, or sociology). Notice that, for 
such a uniform distribution, the knowledge of the mean value p„ and of the standard 

deviation a13  automatically determines the RANGE of that random variable in between 

its lower (called a,) and upper (called hi ) limits: in fact these limits are given by the 

equations 

a,=  
= pR +r3a„.  

(the "surprising" factor F3 in the above equations comes from the definitions of mean 

value and standard deviation: please see equations (12), (15) and (17) in Appendix B 
for the relevant proof). So the uniform distribution of each random variable 0 is 

perfectly determined by its mean value and standard deviation, and so are all its other 
properties. 

The next problem is the following: 

OK, since we now know everything about each uniformly distributed 0,, what is the 

probability distribution of N , given that N is the product (7) of all then? 

In other words, not only do we want to find the analytical expression of the probability 
density function of N, but we also want to relate its mean value /I A  to all mean values 

p,,, of the D, , and its standard deviation a, to all standard deviations a„.  of the D, . 
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This is a difficult problem. 

It occupied the author's mind for no less than about ten years (1997-2007). 

It is actually an ANALYTICALLY UNSOLVABLE problem, in that, to the best of this 
author's knowledge, it is IMPOSSIBLE to find an analytic expression for any FINITE 
PRODUCT of uniform random variables!), . This result is proven in Sections 2 thru 3.3 of 

Appendix B (unfortunately!). 

6. Solving the Statistical Drake Equation By Virtue of the 
Central Limit Theorem (CLT) of Statistics 

The solution to the problem of finding the analytical expression for the probability 
density function of N in the statistical Drake equation was found by this author in 
September 2007. The key steps are the following: 

• Take the natural logs of both sides of the statistical Drake equation (7). This 
changes the product into a sum. 

• The mean values and standard deviations of the logs of the random variables R 

may all be expressed analytically in terms of the mean values and standard 
deviations of the R . 

• Recall the Central Limit Theorem (CLT) of statistics, stating that (loosely speaking) if 
you have a SUM of independent random variables, each of which is ARBITRARILY 
DISTRIBUTED (hence, also including uniformly distributed), then, when the number 
of terms in the sum increases indefinitely (i.e. for a sum of random variables 
infinitely long)... the SUM RANDOM VARIABLE TENDS TO A GAUSSIAN. 

• Thus, the natural log of N tends to a Gaussian. 

• Thus, N tends to the LOGNORMAL DISTRIBUTION. 

• The mean value and standard deviations of this lognormal distribution of N may all 
be expressed analytically in terms of the mean values and standard deviations of 
the logs of the D, already found previously. 

This result is fundamental. 

All the relevant equations are summarized in the following Table 1. This table is actually 
the same as Table 2 of the author's original paper IAC-08-A4.1.4, entitled "The 
Statistical Drake Equation" and presented by him at the International Astronautical 
Congress (IAC) held in Glasgow, UK, on October 1st, 2008. This original paper is 
reproduced in Appendix B. 

To sum up, not only is it found that N approaches the completely known lognormal 
distribution for an INFINITY of factors in the statistical Drake equation (7), but the way 
is paved to further applications by removing the condition that the number of terms in 
the product (7) must be FINITE. 
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This possibility of ADDING ANY NUMBER OF FACTORS IN THE DRAKE EQUATION (7) 
was not envisaged, of course, by Frank Drake back in 1961, when "summarizing" the 
evolution of life in the galaxy in SEVEN simple STEPS. But today, the number of factors 
in the Drake equation should already be increased: for instance, there is no mention in 
the original Drake equation of the possibility that asteroidal impacts might destroy the 
life on Earth at any time, and this is because the demise of the dinosaurs at the KIT 
impact had not been yet understood by scientists in 1961, and was so only in 1980! 

In practice, the number of factors should INCREASE as much as necessary in order to 
get better and better estimates of N as long as our scientific knowledge increases. This 
is called the "Data Enrichment Principle" and believe should be the next important goal 
in the study of the statistical Drake equation. 

Finally, a numerical example explaining how the statistical Drake equation works in the 
practice will be given in the next section. 
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Table 1. Summary of the Properties of the Lognormal Distribution That Applies 
to the Random Variable N = Number of ET Communicating Civilizations in the 

Galaxy 

Random variable N = number of communicating ET 
civilizations in galaxy 

Probability distribution Lognormal 
Probability density function 

I 	I 	
2U  0) iliv(u)= -. 	1— 	e 	 Of 

II 	,22;ra 

Mean value 

(AT )= e" e 2  
Variance , 	2), 

Standard deviation 
CT, 	 V 	1 

All the moments, i.e. k-th moment 

(A" 	= ekii  e4 	2  
Mode (= abscissa of the lognormal peak) nnude 	npeak  = ()CI e  

Value of the Mode Peak
Ji 

 if i 
( 	ic = 	I— 

J2g a e  

Median (= fifty-fifty probability value for 
N) 

median = 111 = e" 

Skewness -6u - K ; 	iiyi -L 	41. ' 	

c: 	r (K 4 )2. 	 (e a'  - 	(i 	+ 	+6e 	+6 

Kurtosis K4 	4a- 3 c 	+2 	+ 	e2r  -6 
(K 2 )2  

Expression of pin terms of the lower (130 

and upper (b1) limits of the Drake 
uniform input random variables Di 

7 	7 	r , 	h,014,)-1]- iii,[1n(iii i )- I] 
= A 	, 	

L 	
k -a, 

Expression of cr2  in terms of the lower (a,) 

and upper (th) limits of the Drake 
uniform input random variables a 

2 	7 	-, 	7 	(1.01h1(0 )- hl(C/A2  
' 	' 	' c  =Lac), =LI 

,-, 	,_, 	(b,._„,)2 

7. An Example Explaining the Statistical Drake Equation 

To understand how things work in practice for the statistical Drake equation, please 
consider the following table 2. It is made up of three columns: 

• The first column on the left lists the seven input sheer numbers that also become 

• The mean values (middle column). 

• Finally the last column on the right lists the seven input standard deviations. 
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The bottom line is the classical Drake equation (7). We see that, for this particular set 
of seven inputs, the classical Drake equation (i.e. the product of the seven numbers) 
yields a total of 3500 communicating extraterrestrial civilizations existing in the galaxy 
right now. 

Table 2. Input Values (i.e. mean values and standard deviations) for the Seven Drake Uniform Random 
Variables Di . The first column on the left lists the seven input sheer numbers that also become the mean values 
(middle column). Finally the last column on the right lists the seven input standard deviations. The bottom line is 
the classical Drake equation (7). 

The statistical Drake equation, however, provides a much more articulated answer than 
just the above sheer number N = 3500. In fact, a MathCad code written by this author 
and capable of performing all the numerical calculations required by the statistical 
Drake equation for a given set of seven input mean values plus seven input standard 
deviations, yields for N the lognormal distribution (thin curve) plotted in Figure 2. We 
see immediately that the peak of this thin curve (i.e. the mode) falls at about 

n „,,d, n re,k  = 	250 (this is equation (99) of Appendix B), while the median (fifty- 

fifty value splitting the lognormal density in two parts with equal undergoing areas) falls 
at about wd Lflfl .e" 1740 . These seem to be smaller values than N = 3500 provided by 

the classical Drake equations, but its a wrong impression due to a poor "intuitive" 
understanding of what statistics is! In fact, neither the mode nor the median are the 
"really important" values: the really important value for N is the MEAN VALUE! Now if 
you look at the thin curve in Figure 2 below (i.e. the lognormal distribution arising from 
the Central Limit Theorem), you see that this curve has a LONG TAIL ON THE RIGHT! In 
other words, it does NOT immediately go down to nearly zero beyond the peak of the 
mode. Thus, when you actually compute the mean value, you should not be too 
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surprised to find out that it equals (N)=e"e 2  4589.559 - 4590 communicating 

civilizations now in the galaxy. This is the important number, and it is HIGHER than the 
3500 provided by the classical Drake equation. Thus, in conclusion, THE STATISTICAL 
EXTENSION of the classical Drake equation INCREASES OUR HOPES to find an 
extraterrestrial civilization! 

6.10
-4 

4 5.10
-4  

P. 
0- 1.10

-4 

Figure 2. Comparing the Two Probability Density Functions of the Random Variable N Found (1) 
Without Resorting to the CLT at All (thick curve) and (2) Using the CLT and the Relevant Lognormal 
Approximation (thin curve). 

Even more so our hopes are increased when we go on to consider the standard 
deviation associated with the mean value 4590. In fact, the standard deviation is given 

by equation (97) of Appendix B. This yields UN  =e"e 2  \le ' — I =11195 and so the 

expected number of N may actually be even much higher than the 4590 provided by 
the mean value alone! The "upper limit of the one-sigma confidence interval" (as 
statisticians call it), i.e. the sum 4590+11195 = 15,785, yields a higher number still! 
(Note: the "lower limit of the one-sigma confidence interval is ZERO because the 
lognormal distribution is POSITIVE (or, more correctly, non-negative)). Finally, the 
reader should note that the thick curve depicted in Figure 2 is just the NUMERICAL 
solution of the statistical Drake equation for a FINITE number of 7 input factors. Figure 
2 actually shows that this curve "is well interpolated" by the lognormal distribution (thin 
curve), i.e., by the neat analytical expression provided by the Central Limit Theorem for 
an INFINITE number of factors in the Drake equation. That is, in conclusion, Figure 2 
visually shows that taking 7 factors or an infinity of factors "is almost the same thing" 
already for a value as small as 7. 
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8. Finding the Probability Distribution of the Et-Distance By 
Virtue of the Statistical Drake Equation 

Having solved the statistical Drake equation by finding the lognormal distribution, we 
are now in a position to solve the ET-DISTANCE problem by resorting to statistics again, 
rather than just to the purely deterministic Distance Law (5), as we did in Section 2. 
This is "scientifically more serious" than just the purely deterministic Distance Law (5) 
inasmuch as the new statistical Distance Law will yield a PROBABILITY DENSITY for the 
Distance, with the relevant mean value and standard deviation. In other words, the 
Distance Law (5) itself becomes a random variable whose probability distribution, mean 
value and standard deviation must be computed by "replacing" into (5) the fact that N 
is now known to follow the lognormal distribution. This is mathematically described in 
detail in Section 7 of Appendix A. 

The important new result is the PROBABILITY DENSITY FOR THE DISTANCE, the 
equation of which is 

..TET..lanc(r)= 
3 	I 2u:  

(9) 
r ‘12tra 

holding for t-0. This is equation (114) of Appendix B. 

Starting from this equation, the MEAN VALUE OF THE random variable ET DISTANCE is 
computed as 

(ET_Distance)=Ce 3  e 18 	 (10) 

which is equation (119) of Appendix B, and finally the ET DISTANCE STANDARD 
DEVIATION 

=Ce e 	e 9  -I al 1 Di 

which is equation (123) of Appendix B. Of course, all other descriptive statistical 
quantities, such as moments, cumulants etc. can be computed upon starting from the 
probability density (9), and the result is Table two hereafter, that is Table 3 of Appendix 
B. 

Finally, to complete this section, as well as this "introduction to the statistical Drake 
equation," the numerical values that equations (10) and (11) yield for the Input Table 1 
are determined. They are, respectively: 

=Ce 3  e 	2,670 light years 	 (12) 

18 
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which is equation (153) of Appendix B, and 

cf 	=Cc 3  ET Distame 	 c S'  ile ac)  — I 	1,309 light yeam 

which is equation (154) of Appendix B. 

(13) 
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Table 2. Summary of the Properties of the Probability Distribution That Applies 
to the Random Variable ET_Distance Yielding the (average) Distance Between 

Any Two Neighboring Communicating Civilizations in the Galaxy 

Random variable ET Distance between any two neighboring 
ET civilizations in galaxy assuming they are 
UNIFORMLY distributed throughout the 
whole galaxy volume. 

Probability distribution Unnamed 
Probability density function r, 

3 	I 
( 

2ff 
r)= — • ,_ 'FT Distant 	 ( _ 

r 

Numerical constant constant C related to the Milky 
Way size 

c = V6 	11.,..-  28,845 	light years 

Mean value ,, 	ir- 
(ET_Distana„ =C e 3  e la  

Variance 
2 	 . 

CET Di•tan 	 e I 

Standard deviation 

CET Distanc — C  e 	 -1 

All the moments, i.e. k-th moment ,72  
KET_Distanct A  ) = d e 

Mode (= abscissa of the lognormal peak)  u- 

r,,,,,,,=Ce 	3  e 	9  

Value of the Mode Peak Peak Value of fE,2,,,„n“,(1-)= 

3 	3, 	a 
1 3 	8 

— fET Dt,tancc(iiixte ) — 	 ( 	( 
C ITyr °- 

Median (= fifty-fifty probability value for N) 
inedian =m=Ce 3  

Skewness 
em"  

K 3  

„, 
e 2  — 3e 	i 2e 6  

(K 4 ) 

+12 e 	— 6e 

Kurtosis 4 a 	a 	2 a '  
K4 	

3 	9  ,  = 	+2 e 	+3e 	— 6 

Expression  of 	in terms of the lower (ai) 
and upper (bi) limits of the Drake uniform  
input random variables Di 

7 	7 

h, — a, 

Expression of a
2 

 in terms of the lower (ai) 
and upper (bi) limits of the Drake uniform 
input random variables Di 

2 	7 	7 
(i.b. rill (b. )— Ill (a. )12  

, 	, 	, 	, cr -  = E0-;, =II 	, 
;_i 	e -I 	01 
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It is clarifying to draw the graph of the ET Distance probability density (9): 

DISTANCE OF NEAREST ET_CIVILIZATION 
5.6310

-no 

0= 
2.25 .10

-20  

0 0  
500 1000 1500 2000 2500 3000 3500 

ET_Dist ance from Earth ( ight yea s) 

4000 4500 5000 

Figure 3. The Probability of Finding the Nearest Extraterrestrial Civilization at the distance r From Earth 
(in light years) if the Values Assumed in the Drake Equation are Those Shown in Input Table I. The 
relevant probability density function JET Di(r) is given by equation (9). Its mode (peak abscissa) equals 1933 

light years, but its mean value is higher since the curve has a long tail on the right: the mean value equals in fact 
2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FOR SET!, 
inasmuch as the nearest ET galaxy civilization might lie at just 1 sigma = 2670-1309 = 1361 light years from us. 

From Figure 3 we see that the probability of finding extraterrestrials is practically zero 
up to a distance of about 500 light years from Earth. Then it starts increasing with the 
increasing distance from Earth, and reaches its maximum at 

_.” 

rpe„k  =Ce 3  e 9  2,1,933 light years . 	 (14) 

This is the MOST LIKELY VALUE of the distance at which we can expect to find the 
nearest extraterrestrial civilization. 

It is not the mean value of the probability distribution (9) for fET Dista,„,(0. In fact, the 

probability density (9) has an infinite tail on the right, as clearly shown in Figure 3, and 
hence its mean value must be higher than its peak value. As given by (10) and (12), its 

Cr 

mean value is 1; 	,.,=Ce e 	2670 light years. This is the MEAN (value of the) 

DISTANCE at which we can expect to find extraterrestrials. 
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After having found the above two distances (1933 and 2670 light years, respectively), 
the next natural question that arises is: "what is the range, back and forth around the 
mean value of the distance, within which we can expect to find extraterrestrials with 
"the highest hopes?" The answer to this question is given by the notion of standard 
deviation that we already found to be given by (11) and (13), 

a 	a 

Ce 	c a  e ) —1 1309 light years. 

More precisely, this is the so-called 1-sigma (distance) level. Probability theory then 
shows that the nearest extraterrestrial civilization is expected to be located within this 
range, i.e. within the two distances of (2670-1309) = 1361 light years and 
(2670+1309) = 3979 light years, with probability given by the integral of 

taken in between these two lower and upper limits, that is: 

r,,,..tvcars 
.fh DI L Lfljr) di 0.75 = 75% J]3(Illigl1tyems 

In plain words: with 75 percent probability, the nearest extraterrestrial civilization is 
located in between the distances of 1361 and 3979 light years from us, having assumed 
the input values to the Drake Equation given by table 1. If we change those input 
values, then all the numbers change again, of course. 

9. The "Data Enrichment Principle" as the Best CLT 
Consequence Upon the Statistical Drake Equation (Any 
Number of Factors Allowed) 

As a fitting climax to all the statistical equations developed so far, let us now state our 
"DATA ENRICHMENT PRINCIPLE." It simply states that "The Higher the Number of 
Factors in the Statistical Drake equation, The Better." 

Put in this simple way, it simply looks like a new way of saying that the CLT lets the 
random variable Y approach the normal distribution when the number of terms in the 
sum (4) approaches infinity. And this is the case, indeed. 

10. Conclusions 

We have sought to extend the classical Drake equation to let it encompass Statistics 
and Probability. 

This approach appears to pave the way to future, more profound investigations 
intended not only to associate "error bars" to each factor in the Drake equation, but 
especially to increase the number of factors themselves. In fact, this seems to be the 
only way to incorporate into the Drake equation more and more new scientific 
information as soon as it becomes available. In the long run, the Statistical Drake 
equation might just become a huge computer code, growing in size and especially in 
the depth of the scientific information it contains. It would thus be Humanity's first 
"Encyclopaedia Galactica." 
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Unfortunately, to extend the Drake equation to Statistics, it was necessary to use a 
mathematical apparatus that is more sophisticated than just the simple product of 
seven numbers. 
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Appendix A: Proof of Shannon's 1948 Theorem Stating 
That the Uniform Distribution is the "Most Uncertain" One 
Over a Finite Range of Values 

Information Theory was initiated by Claude Shannon (1916-2001) in his well-known 
1948 two papers: 

2' pp 1,."0-1.: 613-L"fJith. 0::ober 

A Mathematical Theory of Conummication 

By C E SHANNON 

In this Appendix, we wish to draw attention to a couple of theorems that Shannon 
proves on pages 36 and 37 of his work, and read, respectively (note that Shannon 
omits the upper and lower limits of all integrals in the first theorem: they are minus 
infinity and plus infinity, respectively): 

5. Letp:vi be a one-dimentional Minimal:on The foul' 	: giving a maximumentry: tubtect to the 
condition that the standaid deviation cf x be fixed at d i Gamsian. To show thh, we must maximize 

Hi .v: 	p.:NI logy: T: it 

Oath 

/ ;i: 1.- ty-  ibc and : - / p:x ) dx 

ai (10:11t1 aint. T1111 Iequixe by the calcului of tzumtions. maximizing 

i 1 poolagpix : ,iptxxx  . pp:N:  dx. 
.. 

The condition Lot this 
1 	logr'a 	- ii - 0 

and gmasequently I adminne the cantzamito satitity the cOillgaintil 

1 	, 
- 

and 
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7 	If x :a hotted to a half line 	- C fotv O and the fu=2 moment cfx i fixed at a 

	

d - 
	

I La :fat 

then the masunum end opt-  ..can het 

,02 1: -e 

and Is equal to log,. 

Now, we wish to point out that there is a third possible case, other than the two given 
by Shannon. This is the case when the probability density function p(x) is limited to a 

FINITE INTERVAL a < x < h. This is obviously the case with any physical POSITIVE 
random variable, such as a distance, or the number N of extraterrestrial communicating 
civilizations in the ,". And it is easy to prove that for any such finite random variable the 
maximum entropy distribution is the UNIFORM distribution over as tsh. Shannon did 
not bother to prove this simple theorem in his 1948 papers since he probably regarded 
it as too trivial. But we prefer to point out this theorem since, in the language of the 
statistical Drake equation, it sounds like: 

"Since we don't know what the probability distribution of any one of the Drake random 
variables 0, is, it is safer to assume that each of them has the maximum possible 

entropy overai  < 	, i.e., that R is UNIFORMLY distributed there. 

The proof of this theorem is along the same lines as for the previous two cases 
discussed by Shannon: 

We start by assuming that a, 	b, . 

We then form the linear combination of the entropy integral plus the normalization 
condition for D, 

(5.1
r  

	

ptto log 	t-A pictA dx = 0 

where 2 is a Lagrange multiplier. 

Performing the variation, one finds 

- log-  p(x)-1 *2=0 that is: p(x)= e 2 1  . 

Applying the normalization condition (constraint) to the last expression for p(r) yields 

= 	p(v)th =1 e l -1 dx = e 2-[ 1 dA = el (b -a1 ) 

that yields 

A-] 
C 	= 	 

- a;  
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and finally 

Pfx)= 	 with a, S 
h, -a1  

showing that the maximum-entropy probability distribution over any FINITE interval 
a, < x< b, is the UNIFORM distribution. 
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Appendix B: Original Text of the Author's Paper #IAC-08-
A4.1.4 Titled the Statistical Drake Equation 

IAC-08-A4.1.4 

THE STATISTICAL DRAKE EQUATION 
Claudio Maccone 

Co-Vice Chair, SET! Permanent Study Group, International Academy of Astronautics 

Address: Via Martorelli, 43 - Torino (Turin) 10155- Italy 

URL: http://www.maccone.com/ - E-mail: clmaccon@lliberof  t 

ABSTRACT. We provide the statistical generalization of the Drake equation. 

From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven 
positive random variables. We call this "the Statistical Drake Equation," The mathematical consequences of 
this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of 
Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of 
which may be ARBITRARILY distributed, approaches a Gaussian (i.e normal) random variable. This is called 
the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints 
assumed on the third moments of the various probability distributions. In conclusion, we show that: 
I) The new random variable N, yielding the number of communicating civilizations in the Galaxy. follows the 

LOGNORMAL distribution. Then, as a consequence. the mean value of this lognormal distribution is the 
ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N 
are found also. 

2) The seven factors in the ordinary Drake equation now become seven positive random variables. The 
probability distribution of each random variable may be ARBITRARY. The CLT in the so-called 
Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for 
that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary 
probability distribution for each factor. This is both physically realistic and practically very useful, of 
course. 

3) An application of our statistical Drake equation then follows. The (average) DISTANCE between any two 
neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to 
the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the 
relevant probability density function, apparently previously unknown and dubbed "Maccone distribution" 
by Paul Davies. 

4) DATA ENRICHMENT PRINCIPLE. It should be noticed that ANY positive number of random variables 
in the Statistical Drake Equation is compatible with the CLT. So, our generalization allows for many more 
factors to be added in the future as long as more refined scientific knowledge about each factor will be 
known to the scientists. This capability to make room for more future factors in the statistical Drake 
equation we call the "Data Enrichment Principle", and we regard it as the key to more profound future 
results in the fields of Astrobiology and SETI. 

Finally, a practical example is given of how our statistical Drake equation works numerically. We work out in 
detail the case where each of the seven random variables is uniformly distributed around its own mean value 
and has a given standard deviation. For instance, the number of stars in the Galaxy is assumed to be uniformly 
distributed around (say) 350 billions with a standard deviation of (say) I billion. Then, the resulting lognormal 
distribution of N is computed numerically by virtue of a MathCad file that the author has written. This shows 
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that the mean value of the lognormal random variable N is actually of the same order as the classical N given 
by the ordinary Drake equation, as one might expect from a good statistical generalization. 

1. INTRODUCTION 

The Drake equation is a now famous result 
(see ref. [1] for the Wikipedia summary) in the 
fields of SETI (the Search for ExtraTerrestial 
Intelligence, see ref. [2fi and Astrobiology (see ref. 
[3]). Devised in 1960, the Drake equation was the 
first scientific attempt to estimate the number N of 
ExtraTerrestrial civilizations in the Galaxy with 
which we might come in contact. Frank D. Drake 
(see ref. 141) proposed it as the product of seven 
factors: 

N = Ns • fp • II 	• Ji • 	• IL. 	(I) 

Where: 
I) Ns is the estimated number of stars in our 

Galaxy. 
2) fp is the fraction (= percentage) of such stars 

that have planets. 
3) ne is the number "Earth-type" such planets 

around the given star; in other words, ne is 
number of planets, in a given stellar system, 
on which the chemical conditions exist for life 
to begin its course: they are "ready for life," 

41 // is fraction (— percentage) of such "ready for 
life" planets on which life actually starts and 
grows up (but not yet to the "intelligence" 
level). 

5) fi is the fraction (= percentage) of such 
"planets with life forms" that actually evolve 
until some form of "intelligent civilization" 
emerges (like the first, historic human 
civilizations on Earth). 

6) .fri is the fraction (= percentage) of such 
"planets with civilizations" where the 
civilizations evolve to the point of being able 
to communicate across the interstellar 
distances with other (at least) similarly 
evolved civilizations. As far as we know in 
2008, this means that they must be aware of 
the Maxwell equations governing radio waves, 
as well as of computers and radioastronomy 
(at least). 

71 IL is the fraction of galactic civilizations alive 
at the time when we, poor humans, attempt to 
pick up their radio signals (that they throw out 
into space just as we have done since 1900, 
when Marconi started the transatlantic 
transmissions). In other words, ffit is the 
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number of civilizations now transmitting and 
receiving, and this implies an estimate of "how 
long will a technological civilization live?" 
that nobody can make at the moment. Also, 
are they going to destroy themselves in a 
nuclear war, and thus live only a few decades 
of technological civilization? Or are they 
slowly becoming wiser, reject war, speak a 
single language (like English today), and 
merge into a single "nation", thus living in 
peace for ages? Or will robots take over one 
day making "flesh animals" disappear forever 
(the so-called "post-biological universe")? 

No one knows... 

But let us go back to the Drake equation (I). 
In the fifty years of its existence, a number of 
suggestions have been put forward about the 
different numeric values of its seven factors. Of 
course, every different set of these seven input 
numbers yields a different value for N. and we can 
endlessly play that way. But we claim that these 
are like.., children plays! 

We claim the classical Drake equation (1), as 
we shall call it from now on to distinguish it from 
our statistical Drake equation to be introduced in 
the coming sections, well, the classical Drake 
equation is scientifically inadequate in one regard 
at least: it just handles sheer numbers and does not 
associate an error bar to each of its seven factors. 
At the very least, we want to associate an error 
bar to each D. 

Well, we have thus reached STEP ONE in our 
improvement of the classical Drake equation: 
replace each sheer number by a probability 
distribution! 

The reader is now asked to look at the now 
chart in the next page as a guide to this paper, 
please. 

2. STEP 1: LETTING EACH FACTOR 
BECOME A RANDOM VARIABLE 

In this paper we adopt the notations of the 
great book "Probability, Random Variables and 
Stochastic Processes" by Athanasios Papoulis 
(1921-2002), now re-published as Papoufis-Pillai, 
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ref. [5]. The advantage of this notation is that it 

makes a neat distinction between probabilistic (or 

statistical: it's the same thing here) variables, 

always denoted by capitals, from non-probabilistic 

(or "deterministic") variables, always denoted by 

lower-case letters. Adopting the Riponlis notation 

also is a tribute to hi En by this author, who was a 

Fulbright Grantee in the United States with him at 

the Polytechnic Institute (now Polytechnic 

University) of New York in the years 1977-78-79. 

We thus introduce seven new (positive) 

random variables O CM from "Drake") defined 

as 

= Ns 

02  = 

= lie 

D4 = fl 	 (2) 

Ds = fi 

D,= ft .  
Ds  = fL 

so that our STATISTICAL Drake equation may be 
simply rewritten as 

N  = HD' 
	 (31 

Of course. N now becomes a (positive) random 
variable too, having its own (positive) mean value 

and standard deviation. dust as each of the O has its 

own (positive) mean value and standard deviation... 
... the natural question then arises: how are the seven 
mean values on the right related to the mean value on 
the left? 
„. and how are the seven standard deviations on the 
right related to the standard deviation on the left? 

Just take the next step... 

3. 	STEP 2: INTRODUCING LOGS TO 
CHANGE THE PRODUCT INTO A SUM 

Products of random variables are not easy to 
handle in probability theory. It is actually much 
easier to handle sums of random variables, rather 
than products, because: 

I) 	The probability density of the sum of two Or 
more independent random variables is the 
convolution of the relevant probability 
densities (worry not about the equations, 
right now). 

2) The Fourier transform of the convolution 
simply is the pmduct of the Fourier 
transforms (again, worry not about the 
equations, 	at 	this 	point) 

30 
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4. The Central Limit Theorem (CLT) of Statistics. 

1. Introduction 

2. Step 1: Letting each factor become a random 

2.1. Step 2: Introducing logs to change the product into a 

2.2. Step 3: The transformation law of random variables. 

DEAD END! 

S. LOGNORMAL distribution as the probability 
distribution of the number N of 
communicating ExtraTerrestrial Civilizations 
in the Galaxy. 

3.1. Step 5: A numerical example of the Statistical Drake equation 
with uniform distributions for the Drake random 
variables 

3. Step 0: Assuming the easiest input distribution for 
each a : the uniform distribution. 

3.2. Step 6: Computing the logs of the 
7 uniformly distributed 
Drake random variables 

3.3. Step 7: Finding the probability 
density function of N, but 
only numerically not 
analytically. 

6. Comparing the CLT results with the Non-CLT 
results, and discarding the Non-CLT approach. 

7 DISTANCE to the nearest ExtraTerrestrial 
Civilization as a probability distribution (Paul 
Davies dubbed that the Maccone distribution). 

7.1 Classical, non-probabilistic derivation of the 
Distance to the nearest ET Civilization. 

7.2 Probabilistic derivation of probability density 
function for nearest ET Civilization Distance. 

7.3 Statistical properties of the distribution. 

S. 	DATA ENRICHMENT PRINCIPLE as the best 
CLT consequence upon the Drake equation: 
any number of factors allowed for. 

7.0 Numerical example of the distribution. 
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So, let us take the natural logs of both sides of the 
Statistical Drake equation (3) and change it into a 
sum: 

type of probability density function (pdt) for the last 
seven of equations (5), then we must compute the 
(new and different) pdf of the logs of such random 
variables. And the pdf of these logs certainly is not 
gamma-type any more. 

In (N)= In = 	In (13, ) 	(4) 

It is now convenient to introduce eight new (positive) 
random variables defined as follows: 

f Y = In (N ) 

IYi  = 	) i = 1,...,7. 
(5) 

Upon inversion, the first equation of (5) yields the 
important equation, that will be used in the sequel 

N = e' 	 (6) 

We are now ready to take STEP THREE 

STEP 3: THE TRANSFORMATION LAW 
OF RANDOM VARIABLES 

So far we did not mention at all the problem: 
"which probability distribution shall we attach to 

each of the seven (positive) random variables D '?" 

It is not casy to answer this question because we 
do not have the least scientific clue to what 
probability distributions fit at best to each of the 
seven points listed in Section I. 

Yet, at least one trivial error must be avoided: 
claiming that each of those seven random variables 
must have a Gaussian (i.e. normal) distribution. In 
fact, the Gaussian distribution, having the well-
known bell-shaped probability density function 

f x (x; p, CT = 	 
±Tira 

has its independent variable y ranging between —oc 
and ny and so it can apply to a real random variable 
Y only, and never to positive random variables like 
those in the statistical Drake equation (3). Period. 

Searching again for probability density functions 
that represent positive random variables, all obvious 
choice would be the gamma distributions (see, for 
instance, ref. [6]). However, we discarded this choice 
too because of a different reason: please keep in mincl 
that, according to (5). once we selected a particular 

32 

It is high time now to remind the reader of a 
certain theorem that is proved in probability courses, 
but, unfortunately, does not seem to have a specific 
name. It is the transformation law (so we shall call 
it, see, for instance, ref. [5]) allowing us to compute 
the pdf of a certain new random variable Y that is a 

known function Y = g(X) of another random 

variable X having a known pdf. In other words, if the 

pdf f, (t) of a certain random variable X is known, 

then the pdf t.  (y) of the new random variable Y. 

related to X by the functional relationship 

Y = g(X) 	 (8) 

can be calculated according to this rule: 
I) First invert the corresponding non-probabilistic 

equation y = g(v) and denote by v, (y) the 

various real roots resulting from the this 
inversion. 

2) 	Second, take nonce whether these real roots may 
be either finitely- or infinitely-many, according 

to the nature of the function y = g(x), 

3, Third, the probability density function of Y is 
then given by the (finite or infinite) sum 

fy (o_zfx 

g .(xi(Y) 

where the summation extends to all roots x (y) and 

g cv,(y) is the absolute value of the first 

derivative of ,t;fy) where the i-th root yi  (y) has 

been replaced instead of .y. 

Since we must use this transformation law to transfer 

from the Di  to the Yi  = 	it is clear that we 

need to start from a Di  pdf that is as simple as 

possible. The gamma pdf is not responding to this 

need because the analytic expression of the 
transformed pdf is very complicated (or, at least, it 
looked so to this author in the first instance). Also, 
the gamma distribution has two free parameters in it, 
and this "complicates" its application to the various 
meanings of the Drake equation. In conclusion, we 
discarded the gamma distributions and confined 

fir ()) 	(7) 

(9) 
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ourselves to the simpler uniform distribution instead, 
as shown in the nest section. 

4. STEP 4: ASSUMING THE EASIEST 
INPUT DISTRIBUTION FOR EACH D,: 
THE UNIFORM DISTRIBUTION 

Let us now suppose that each of the seven Di is 
distributed UNIFORMLY in the interval ranging 

from the lower limit a;  > 0 to the upper limit 

h, > 

This is the same as saying that the probability 
density function of each of the seven Drake random 
variables D, has the equation 

ttLIIJJOFflI Di  (4= 	I  
17, —a ;  

as it follows once from the normalization condition 

tiu]IJloini_D, (O CR  — I 	 ill 

Let us now consider the mean value of such 
uniform a defined by 

(b e  —(0a 	+h,2 ) a,2 	+ b 

3 Q' —a, ) 	 3 

The second moment of the uniform distribution is 
thus 

Kunifonn D, 2 ) — 	
-(1),

2 

3 
t 13) 

From (12 and (13) we may now derive the variance 
of the uniform distribution 

= (uniform D,2  (uniform_D, )2  

+h 2  (a, b, 	(h, 	
(14) 

3 	 4 	12 

Upon taking the square root of both sides of (14), we 
finally obtain the standard deviation of the uniform 
distribution: 

— 
„„, k,n„ D, 

2173 

with 0 	x 	(10) 

(unifonn D —f,' Lll „ D,(x)Jr = x dx 
— fa, 

b 2  —a 2 	a + 

2 (k —a, ) 	2 

We now wish to perform a calculation that is 
mathematically trivial, but rather unexpected from 
the intuitive point of view, and very important for our 
applications to the statistical Drake equation. Just 
consider the two simultaneous equations (12) and 
(15) 

131 
	2 

By word. (as it is intuitively obvious): the mean 
value of the uniform distribution simply is the mean 
of the lower plus upper limit of the variable range 

a.+ h.  
(un itoni D, —  ' 

2 

In order to find the variance f the uniform 
distribution, we first need finding the second moment 

+h 
(unitom) D, ) — 	' 

_h, —a, 
2T4  

f
a, = (un dot 111 D ) 	cuntionn 

= (unit/Hill D,)t- 	D  

(12) 
Upon inverting this trivial linear system, one finds 

(uniform D,-)= 1 x-  fu
,1,' 	

„, D, (r)dr 

bi  —a, 

1 x 

3 3 (tz 	) 

This is of paramount importance for our application 
the Statistical Drake equation inasmuch as it shows 
that: 
if one (scientifically) assigns the mean value and 
standard deviation of a certain Drake random 
variable Di, then the lower and upper limits of the 
relevant uniform distribution are given by the two 
equations (17), respectively. 

33 
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In other words, there is a factor of 	=1.732 

included in the two equations (17) that is not obvious 
at all to human intuition, and must indeed be taken 
into account. 

The application of this result to the Statistical Drake 
equation is discussed in the next section. 

3.1 STEPS: A NUMERICAL EXAMPLE 
OF THE STATISTICAL DRAKE 
EQUATION WITH UNIFORM 
DISTRIBUTIONS FOR THE DRAKE 
RANDOM VARIABLES Di 

The first variable Ns in the classical Drake 
equation (I) is the number of stars in our Galaxy. 
Nobody knows how many they are exactly (!). Only 
statistical estimates can be made by astronomers, and 
they oscillate (say) around a mean value of 350 
billions (if this value is indeed coma!). This being 
the situation, we assume that our uniformly 
distributed random variable Ns has a mean value of 
350 billions minus or plus a standard deviation of 
(say) one billion (we don't care whether this number 
is scientifically the best estimate as of August 2008: 
we Just want to set up a numerical example of our 
Statistical Drake equation). In other words, we now 
assume that one has: 

tirliforrn D, )= 350 .109  

= I • 10. 

Therefore, according to equations (17) the lower and 
upper limit of our uniform distribution for the 
random variable A/./..D1  are, respectively 

i

= (uniform D, )— sr3 cs-u„!„,„ ,,, = 348.3, 109  

= Kunifonfi_D , ) + J o-L,„! ,;),„, ,y  = 351.710° (19)  

Similarly we proceed for all the other six random 
variables in the Statistical Drake equation (3). 

For instance, we assume that the fraction of stars 
that have planets is 50%, i.e. 50/100, and this will be 
the mean value of the random variable .fp=Di. We 
also assume that the relevant standard deviation will 

be 	10%, i. e. that o-  =10 MX) 	Therefore, the  

relevant lower and upper limits for the uniform  
distribution of fp=Di turn out to be 

a 	= (uniform D2 ) - ir3 	i,„„_D,  = 0.327 { 

h i)?  = (tinitom032)=5/3  ofispios„_fi, = 0.673 
(20) 

The next Drake random variable is the number 
tie of "Earth-type" planets in a given star system. 
Taking example from the Solar System, since only 
the Earth is truly "Earth-type", the mean value of ne 
is clearly I. but the standard deviation is not zero if 
we assume that Mars also may be regarded as Earth-
type. Since there are thus two Earth-type planets in 
the Solar System, we must assume a standard 

deviation of 1/T3 = 0.577 to compensate the 

appearing in (17) in order to Finally yield two "Earth-
type" planets (Earth and Mars) for the upper limit of 
the random variable ne. In other words, we assume 
that 

l

a „, = (unitonfi_Ds.)— sr3 aun,,,,rn, D = 0 

b„, = (unitorin DI)+ sr30u„„yrn, r)  = 2 

The next four Drake random variables have even 
more "arbitrarily” assumed values that we simply 
assume for the sake of making up a numerical 
example of our Statistical Drake equation with 
uniform entry distributions. So, we really make no 
assumption about the astronomy, or the biology, or 
the sociology of the Drake equation: we just care 
about its mathematics. 

All our assumed entries are given in Table 1. 

Please notice that, had we assumed all the 
standard deviations to equal zero in Table 1, then our 
Statistical Drake equation (3) would have obviously 
reduced to the classical Drake equation (1), and the 
resulting number of civilizations in the Galaxy would 
have turned out to be 3500: 

N = 3500 
	

122/ 

This is the important deterministic number that we 
will use in the sequel of this paper for comparison 
with our statistical results on the mean value of N, 

i.e. (AO This will be explained in Sections 3.3 and 5. 

21 ) 
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tNs := Ns cNs = 1-10 
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Table I. Input value. (i.e. mean values and standard deviations) for the seven Drake uniform random vadables Dr 
The first column on the left Ii 5k the seven input sheer numbers that also become the mean values (middle column). 

Finally the last column on the right lists the seven input standard deviations. The bottom line is the classical Drake 

equation (I). 

3.2 STEP 6: COMPUTING THE LOGS 
OF THE 7 UNIFORMY 
DISTRIBUTED DRAKE RANDOM 
VARIABLES Di 

Intuitively speaking, the natural log of a 

uniformly d'stributed random variable may not be 

another uniformly distributed random variable! This 

is obvious from the trivial diagram of y = In(x) 

shown below: 

Natural logarithm of x 

1 

0 

3 	4 
POSITIVE independ III variahi 

Figure I. The simple function v = 

So, if we have a uniformly distributed random 

variable a with lower limit cr, and upper limit n , the 

random variable 

=l11(4) 1 =1....7 	 12.3 

must have its range limited in between the lower limit 

Wad and the upper limit lin bd. In other words, this 

are the lower and upper limits of the relevant 

probability density function fr, 	. But what is the 

actual analytic expression of such a pdf?. To find it, 

we must resort to the general transformation law for 

random variables, defined by equation (9). Here we 

obviously have 

y = g(x) = In(x) 	 124 

That, upon inversion, yields the single root 

-r1(3")= -1:61= e 	 (25) 

On the other hand. differentiating (24) one gets 
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g CO= 

where (25) 
virtue 	of the 
(10) and of 
finally yields 

.1))(4-1 

- 	and 	(x, (Y)) 

was already used in 
uniform 	probability 

(26), the general transformation 

f 	&)) 	I 

I  = 	= 	(26) 
In 

compute 

(y 2  \ 

1), [n  

order to find the variance also, we must 
the mean value of the square of Y„ that 

1,,b) 	r hib) ) v 2 
= 

first 
is 

)(- 

y) 

the 	last step. 	By 
density 	function 

law (9) 

1 
27) 

)1))))„,) Y- 	f})tY)dY) 	ilio lb  

2Q 	) - 21n 0)) )+ 	a ) 118 2 (a,)- 2 In(ar  

b, -a, 

.132) 
g K»,(y)1 —01 1 1), -a, 

C ' The variance of 1'; = In(0) is now given by (32) 
minus the square of (31), that, after a few reductions, 

In other words, the requested pdf of Y is 

e' a b 	)— In (a, )]2 
(33)  In(ar )cy8 In 0(, ) 	(28) CT v2 = /Tin( 	

I 	1— 18 -a, (b1 	a1 )
2 

 

Probability density functions of the natural logs of Whence the corresponding standard deviation 
all 	the 	uniformly 	distributed 	Drake 	random 
variables Lb. 

a b iln(b )- In (a,)1- 
1 	" (34)  

(b, - «,)2  This is indeed a positive function of y over the 

Let us now turn to another topic: the use of 
Fourier transforms, that, in probability theory, are 
called "characteristic functions," Following again the 
notations of Papoulis (ref. [51) we call "characteristic 

function", cI( v)  (4) , of an assigned probability 

distribution YE , the Fourier transform of the relevant 

„(29) 	probability density function, that is (with j =) 

interval In(a,) y In((;), as for every pdf, and it is 

easy to see that its normalization condition is 
fulfilled: 

,  
Lo., b, -a, 	b, -a, 

iy(Y)d)'= 

Next we want to find the mean value and 
standard deviation of Y„ since these play a crucial 

role for future developments. The mean value 	) is 

given by 

(0) 	 (1(8 ) v  , e  
(YE )=.1Y f v (())dv=   dv 

)b( 	- 

[In(), )— 1] — a, [In  (a,  )-1] 
(30) 

—a, 

 

This is thus slw mean value of the natural log of all 
the uniformly distributed Drake random variables 

(Y (  )= (In (D ) ))—  " 
b [1(01 — I] — (4, [In(a )— 1] 

— a, 
	 131)  

(I),, (c)— 	'f (y)dy 
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The use of characteristic functions simplifies things 
greatly. For instance, the calculation of all moments 
of a known pdf becomes trivial if the relevant 
characteristic function is known, and greatly 
simplified also are the proofs of important theorems 
of statistics, like the Central Limit Theorem that we 
will use in Section 4. Another important result is that 
the characteristic function of the sum of a finite 
number of independent random variables is simply 
given by the product of the corresponding 
characteristic functions. This is just the case INC are 
facing in the Statistical Drake equation (3) and so we 
are now led to find the characteristic function of the 
random variable YE i.e. 

CI) 	= 	c"-' Ty ) (.8 )(I.Y= 

36 
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g (x)= er and g (x l ()))))= ekb )  = y 	(42) 

where (41) was already used in the last step. The 
general transformation law (9) finally yields 

-TN () -LI x. ").)) I  Iv Ontv» 
g 	H 

(43) 

dc.( 39) 
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I 	Nth ) 
' 	Cli 02) 

_ 	iln()),) 

_ e0-). )1n 

(k -ar)(1-(K)  

[e ( 

),—a1  1+14: 1  

(h, —ff)0+ jerl 

InG) 	This author regrets that he was unable to compute the 
his, I 	last integral analytically. He had to compute it 

numerically for the particular values of the 14 ai and 
b, that follow from Table 1 and equations 17. The 
result was the probability density function for Y = 
ION) plotted in the following Figure 2. 

(36) 

Thus, the characteristic function of the natural log 
of the Drake uniform random variable Di is given by 

_ tie( ix 

(61= 
Y) -a, 	m /41 

3.3 STEP 7: FINDING THE 
PROBABILITY DENSITY 
FUNCTION OF N, BUT ONLY 
NUMERICALLY NOT 
ANALYTICALLY 

Having found the characteristic functions 

My(:) of the logs of the seven input random 

variables a . we can now immediately find the 
characteristic function of the random variable Y = 
ION) defined by (5). In fact, by virtue of (4), of the 
well-known Fourier transform property stating that 
"the Fourier transform of a convolution is the product 
of the Fourier transforms, and of (37), it 
immediately follows that (D v  GO equals the product 

of the seven My,  (c): 

b fiff 

(1)14)=1"1041-11 	  

The next step is to invert this Fourier transform in 
order to get the probability density function of the 
random variable Y = In(N). In other words, we must 
compute the following inverse Fourier transform 

Figure 2. Probability density function of Y = In(N) 
computed numerically by virtue of the integral (39). 
The two "funny gaps" in the curve are due to the 
numeric limitations in the MatliCad numeric solver 
that the author used for this numeric computation. 

We are now just one more step from finding the 
probability density of N. the number of 
ExtraTerrestnal Civilizations in the Galaxy predicted 
by our Statistical Drake equation (3). The point here 
is to transfer from the probability density function of 
Y to that of N, knowing that Y = In(N), or 
alternatively, that N=exp(13, as stated by (6). We 
must thus resort to the transformation law of random 
variables (9) by setting 

y = AO= e 

This, upon insersion, yields the single root 

mi(Y)= r(Y)= 11ff Y)• 

On the other hand. differentiating (40) one gets 

(37) 

1381 
(40)  

(41)  

r 
ly(Y)= —  y Otic 

7 

Fl(l), 
_ 

[

• ' 	1 i 

0 (b, —ai )(1+ jc) 
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This probability density function ix  (y) was 

computed numerically by using (43) and the numeric 
curve given by (39), and the result is shown in Figure 

4P 
V 

4 104 ROBABILIFY DENSITY FuNcrioN OF N 

0 	ION 	2000 	3000 	4000 
N = Nun her of ET Claslizatio ists Gala- 

Figure 3. The numeric (and not analytic) probability 
density function curve ifiTy) of the number N of 

ExtraTerrestrial Civilizations in the Galaxy according 
to the Statistical Drake equation (3). We see that the 
curve peak (i.e. the mode) is very close to low values 
of N, but the tail on the right is high, meaning that the 

resulting mean value (N) 	is of the order of 

thousands. 

We now want to compute the mean value (N) 

of the probability density (43). Clearly, it is given by 

(N) = f y 	(y)dy • 	 (44) 

This integral too was computed numerically, and the 
result was a perfect match with N=3500 of (22), that 
is 

(N)= 3499.99880 177509 + 0.00000012 4914686i (45) 

Note that this result was computed numerically in the 
complex domain because of the Fourier transforms, 
and that the real part is virtually 3500 (as expected) 
while the imaginary part is virtually zero because of 
the rounding errors. So, this result is excellent, and 
proves that the theory presented so far is 
mathematically correct. 

Finally we want to consider the standard 
deviation. This also had to he computed numerically, 
resulting in 

u 	= 3953.42910 143389 + 0.(XXX30003 28(XX)58i (46) 

This standard deviation, higher than the mean value, 
implies that N might range in between 0 and 7453. 

This completes our study of the probability 
density function of N if the seven uniform Drake 
input random variable 0, have the mean values and 
standard deviations listed in Table I. 

We conclude that, unfortunately, even under the 
simplifying assumptions that the IT be uniformly 
distributed, it is impossible to solve the full problem 
analytically, since all calculations beyond equation 
(38) had to be performed numerically. 

This is no good. 

Shall we thus loose faith, and declare "imp ssible" 
the task of finding an analytic expression for the 
probability density function f ifiv  (y) ? 

Rather surprisingly, the answer is "no", and there 
is indeed a way out of this dead-end, as we shall see 
in the next section. 

5. THE CENTRAL LIMIT THEOREM (ELT) 
OF STATISTICS 

Indeed there is a good, approximating analytical 
expression for jr.,(y) , and this is the following 

lognormal probability density function 

To understand why, we must resort to what is 
perhaps the most beautiful theorem of Statis ics: 
the Central Limit Theorem (abbreviated CLT). 
Historically, the CLT was in Fact proven fir. I in 
1901 by the Russian mathematician Alexandr 
Lyapunov (1857-1918), and later (1920) by the 
Finnish mathematician Jar) Waldemar Lindeberg 
(1876-1932) under weaker conditions. These 
conditions are certainly fulfilled in the context of 
the Drake equation because of the "reality" &the 
astronomy, biology and sociology involved with it, 
and we are not going to discuss this point any 
further here. A good, synthetic description of the 
Central Limit Theorem (CLT) of Statistics is found 
at the Wikipedia site (ref. [7]) to which the reader 
is referred for more details, such as the equations 
for the Lyapunov and the Lindeberg conditions, 
making the theorem 'rigorously valid. 

(47) 
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Put in loose terms, the CLT states that, if one 
has a sum of random variables even NOT 
identically distributed, this sum tends to a normal 
distribution when the number of terms making up 
the sum tends to infinity. Afro, the normal 
distribution mean value is the sum of the mean 
values of the addend random variables, and the 
normal distribution variance is the sum of the 
variances of the addend random variables. 

Let us now write down the equations of the CLT 

in the form needed to apply it to our Statistical Drake 
equation (3). The idea is to apply the CLT to the sum 
of random variables elven by (4) and (5) whatever 
their probability distributions can possibly be. In 
other words, the CLT applied to the Statistical Drake 
equation (3) leads immediately to the following three 
C quations: 

) The sum of the (arbitrarily distributed) 
independent random variables d makes up 
the new random variable Y. 

21 The sum of their mean values makes up the 
new mean value of Y. 

31 The sum of their variances makes up the 
new variance of Y. 

In equations: 

This completes our synthetic description of the CLT 
for sums of random variables. 

6. THE LOGNORMAL DISTRIBTION IS 
THE DISTRIBUTION OF THE NUMBER 
N OF EXTRATERRESTRIAL 
CIVILIZATIONS IN THE GALAXY 

The CLT may of course be extended to products 
of random variables upon taking the logs of both 
sides, just as we did in equation (3). It then follows 
that the exponent random variable, like Y in (6), 
tends to a normal random variable, and, as a 
consequence, it follows that the base random 
variable, like N in (6), tends to a lognormal random 
variable. 

To understand this fact better in mathematical 
terms consider again of the transformation law (9) of 
random variables. The question is: what is the 
probability density function of the random variable N 
in equation (6). that is, what is the probability density 
function of the lognormal distribution? To find it. set 

Y = g(-0= ex  • 
	 (49) 

This upon inversion, yields the single root 

4-1 (4)= 44y1= In(y). 	 150) 

On the other hand, differentiating (49) one gets 

gt0= e‘ and g 44,40)= einh)  =v 	(51) 

where (50) was already used in the last step. The 
general transformation law (9) finally yields 

•
I 	0) 	t 

ti  I\ ( 	
(A (  

))— 2_, X X 	= 	it nt
t  
I4) 	(52) 

(4(01 

Therefore, replacing the probability density on the 
right by virtue of the well-known normal (or 
Gaussian) distribution given by equation (7), the 
lognormal distribution of equation (47) is found, and 
the derivation of the lognormal distribution from the 
normal distribution is proved. 

In view of future calculations, it is also useful to 
point out the so-called "Gaussian integral", that is: 

 	13 2  

— . e  4t, A > 0, B = real . 153 / 
A 

This follows immediately from the normalization 
condition of the Gaussian (7), that is 

154/ 

Just upon expandit g the square at the exponent and 
making the two rep acements (we skip all steps) 

	

= 	> 0, 
0- 2 
	

(55) 

	

B = 	= real. 

(48 
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t 	
I 	I 	20-2 

H •N[Tirer 
ti ±0, 

(N3 )= 
3,11  e  2 a 
	

(64) 

Finally, upon setting k = 4, the fourth moment 

of N is found 

  

Ong1=01  

 

   

dn 
j277- 

  

0 
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In the sequel of this paper we shall denote the 
independent variable of the lognormal distribution 
(47) by a lower case letter n to remind the reader that 
corresponding random variable N is the positive 
integer number of ExtraTerrestrial Civilizations in 
the Galaxy. In other words, 11 will be treated as a 
positive real number in all calculations to follow 
because it is a "large" number (i.e. a continuous 
variable) compared to the only civilization that we 
know of, i.e. ourselves. In conclusion, from now on 
the lognormal probability density function of N will 
be written as 

Upon 	setting 	k = U 	into 	(56), 	the 

normalization condition for 	n) follows 

f ,(n)dn =I. 	 (59) 

Upon setting k =1 into (56), the important 

mean value of the random variable N is found 

(N)= e" e 2 
	

(60) 

Upon setting k =2 into (56), the mean value 
(56) 	of the square of the random variable N is found 

Having so said, we now turn to the statistical 
properties of the lognormal distribution (55). i.e. to 
the statistical properties that describe the number N 
of ExtraTerrestrial Civilizations in the Galaxy. 

Our first goal is to prove an equation yielding all 
the moments of the lognormal distribution (56), that 
is, for every non-negative integer k - 0, 1, 2, ... one 
has 

k ) = e  kis e 	2 	 (57) 

The relevant proof starts with the definition of the k-
th moment 

KN k  
- 	n 	• I N (iz)dn 

(1/ 2 =e2.5  cm.  . 	 (611 

The variance of N now follows from the last two 

formulae: 

o-
2 

= e
2it e a- (6,0-  — I) 
	

(62) 

The square root of this is the important standard 
deviation formula for the N random variable 

(63) 

The third moment is obtained upon setting 

k=3 into (56) 

One then transforms the above integral by 

virtue of the substitution 
(N4 ) =e4,I 6,80- 

1651 

Our next goal is to find the cumulants of N. In 

principle, we could compute all the cumulants C, 

from the generic i-th moment re: by virtue of the 

recursion formula (see ref. [8]) 

K, = _ L 
k 

( ,_i )  

-1 KA 
Per-A • 	 (66) 

(58) 

The new integral in g is then seen to 

reduce to the Gaussian integral (53) 

(we skip all steps here) and (57) 

follows 
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In practice, however, here we shall confine 
ourselves to the computation of the first four 
cumulants only because they only are required to 
find the skewness and kurtosis of the distribution. 
Then, the first four cumulants in terms of the first 
four moments read: 

These 

K i = 

K, = p 2  — KI 

IC= 4E —3K1  K, — 

K 4  = 	—4K1  K 3 	31(7i 	6 K, K2  — K. 

equations yield, respectively: 

(67)  

CT 

=e11  e 2  (68)  

K2 =e27  (69)  

K .= e3 ." e 2 	. (70)  

K4= e41"- 	V —11 (e 3  

From these we derive the skewness 

-(6 +6 (711 

K‘  

(K 

e 	e 
(72)  

+3e272  + 

and the kurtosis 

K4  
= e 	+2 	+ (73)  

(K2)2  

Finally, we want to find the mode of the 
lognormal probability density function. i.e. the 
abscissa of its peak. To do so, we must first 
compute the derivative of the probability density 
function f v (n) of equation (56), and then set it 

equal to zero. This derivative is actually the 
derivative of the ratio of two functions of n, as it 
plainly appears from (57). Thus, let us set for a 
moment 

	

En) 	
(In [n]— 	p)2  ( 	 (74) 

2(72  

where "E7  stands for "exponent" Upon 
differentiating this, one gets 

	

EH= , 	 2 (Inkl— 
	 (75) 

But the lognormal probability density function (56), 
by virtue of (74), now reads 

(n)= 	 
I bro- 

So that its derivative is 

diET Mg:Inc (r) 	I 	—e 	1)E.  (12)•n —I 

dr 	•Itr 	 n 2  

— e[E (n)• +I] 
( 77 ) 

Setting this derivative equal to zero means setting 

E (n) ,  n +1= 	 (78) 

That is, upon replacing (75) 

—I, • (In[n] — p)+ I = 0 . 	(79) 
(7 - 

Rearranging, this becomes 

In[n] — p + 	=0 	 (80) 

and finally 

This is the most likely number of Extra Terrestrial 
Civilizations in the Galaxy. 

How likely? To find the value of the probability 
density function f  (n) corresponding to this 

value of the mode, we must obviously replace (81) 
into (56). After a few rearrangements, one then 
gets 

( 76) 
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This is 'how likely" the most likely number of 
Extra Terrestrial Civilizations in the Galaxy is, i.e. Then, after a few reductions that we skip for thc sakc 

it is the peak height in the lognormal probability 

density function 1,(n). 

of brevity, the full equation (83) is turned into 

tnfin)— p I 
en/ ( 86) 

Next to the mode, the median In (ref [9]) is one 2 
more statistical number used to characterize any 
probability distribution, It is defined as the 
independent variable abscissa m such that a 
1-CaliZati01-1 of the random variable will take up a 
value lower than in with 50% probability or a value 
higher than w with 50% probability again. In other 
words, the median in splits up our probability 
density in exactly two equally probable parts. Since 
the probability of occurrence of the random event 
equals the area under its density curve (i.e, the 
definite integral under its density curve) then the 
median m (of the lognormal distribution, in this 
case) is defined as the integral upper limit rn: 

that is 

(o) — P  ( 	a  )— 0 (87) 

Since from the definition (85 one obviously has 
erf(0)=0, (87) becomes 

In(m)— p  0 	
188) 

whence finally 

for I t, (n)dri 
.10 I? 

- 
— 	(83) 

".[T.nrcr c 	2 
median = = e" 189) 

In order to find m , we may not differentiate (83) with 
respect to m since the "precise" factor 1/2  on the 
right would then disappear into a zero. On the 
contrary, we may try to perform the obvious 
substitution 

This is the median of the lognormal distribution of 
N. In other words, this is the number of 
ExtraTerrestrial civilizations in the Galaxy such 
that, with 50% probability the actual value of N will 
be lower than this median, and with 50% probability 
it will be higher. 

In conclusion, we feel useful to summarize all the 

1841 

	

	equations that we derived about the random variable 
N in the following Table 2. 

into the integral (83) to reduce it to the following 
integral defining the error function erf(f) 

Random variable N= number of communicating ET civilizations in Galaxy 
Probability distribution Lognormal 

Probability density function 
WE f f ff 

II 	2U2 JIII0.1 )= 	' 0 	oj Ti 1 
.1271-a 

Mean value 
a:  

(I)I)= e" ( 2 

Variance = e 2/ 
2 	2,, 

Standard deviation cmv  = el' e 2  \IC a  — i 
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All the moments, i.e. k-Eli moment K/V4)= 	e

LU 

2  

Mode (= abscissa 	f the lognormal peak) nude. — peak 

Value 	hc Mode Peak I 	n 	-, e 	e 
)‘In-  a 

Median = 	probability 	due for N) nedian = in = e)" 

Skewness 
-6" -3  K ; 	. 

_c c: F ) 3 	, 

(KJ) - 	
i

2̀-  + 	+ 6/ + 6Y 

Kurtosis 
K4 	

2 	3(7 	- 
_ 	

- 6 3 + 	e 	+ 	e 
(K 2 ):  

Expression of p in terms of the lower (a) and upper 

Oa limits of the Drake uniform input random 
variables D i 

77 

r  \ 
_ 	k [In(?), )- II - ai  [In (ar )- 11 

/./ = I(0 -1-1  

	

r 	i 	 k -a, 

	

i_ 	_i 

Expression of C 	m 2  in ters of the lower (a,) and u tipper 

(h0) limitsof the Drake uniform input random 
variables 0, 

7 	7 	 2 
a 	Iln(b, )-In (a b 	 it 

1) = La2,  =  
i-) 	;-) 	0-7i - a, 

Table 2. Summary of the properties of the lognormal di, tribution that applies to the random variable N= number of 
ET communicating civilizations in the Galaxy. 

We want to complete this section about the 
lognormal probability density function (56) by 
finding out its numeric values for the inputs to the 
Statistical Drake equation (3) listed in Table 1. 

According to the CLT, the mean value p to he 

inserted into the lognormal density (56) is given 
(according to the second equation (48)) by the sum of 

all the mean values (1)11 ), that is, by virtue of (31), by: 

7  b(b )  - 1]-  k  [In (a, )- I] 
P = E(Yr) 	" b, - a1  

t 90) 

Upon replacing the 14 a and k listed in Ti ble 1 

into (90), the following numeric mean value p is 

found 

p 7,462176 
	

191) 

Similarly, to get the numeric variance a one 
must resort to the last of equations (48) and to (33): 

EOT L  
x-7—, 	a 

"
b [h-1(b 	)12  

1=i 	(bo 	)2 

	(92) 

43 

yielding the following numeric variance a 2  to bc 

inserted into the lognormal pdf (56) 

c 7 2  a 1.938725 

whence dm numeric standard deviation a 

a )7,1 392381 

Upon replacing these two numeric values (84) 
and (86) into the lognormal pdf (56), the latter is 
perfectly determined. It is plotted in Figure 4 
hereafter as the thin curve. 

In other words, Figure 4 shows the lognormal 
distribution for the number N of ExtraTerrestrial 
Civilizations in the Galaxy derived from the Central 
Limit Theorem as applied to the Drake equation 
(with the input data listed in Table I). 

We now like to point out the most i mportm 
statistical properties of this lognormal pdf: 

I) Mean Value of N. This is given by equation (60) 
with Rand a given by (91) and (94), respectively: 

193) 

(94) 
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(N)= e" C 2  "4: 4589.559 
	

(95) 

In other words, there are 4590 ET Civilizations in 
the Galaxy according the Central Lim! Theorem of 
Statistics with the inputs of Table I. This number 
4590 is HIGHER than the 3500 foreseen by the 
classical Drake equation working with sheer 
numbers only, rather than with probability 
distributions. Thus equation (95) IS GOOD FOR 
NEWS FOR SET.', since it shows that the expected 
number of El's is HIGHER with an adequate 
statistical treatment than just with the too simple 
Drake sheer numbers of (1). 

2) Variance of N. The variance of the lognormal 
distribution is given by (62) and turns out to be a 
huge number: 

o-2  = 	ea-  (ea  —0-,  25328623.1 	(96) 

3) Standard deviation of N. The standard deviation 
of the lognormal distribution is given by (63) and 
turns out to be: 

ta  —1=11195 

Again, thA is GOOD NEWS FOR SETE In fact, 
such a high standard deviation means that N may 
range from very low values (zero, theoretically, and 
one since Humanity exists) up to tens of thousands 
(4590+11195=15785 is (95)÷(97)). 

4) Mode of N. The mode (= peak abscissa) of the 
lognormal distribution of N is given by (81), and has 
a surprisingly low numeric value: 

lll,de
n p,„,= e" e 	250 
	

(98) 

This is we I shown in Figure 4: the mode peak is very 
pronounced and close to the origin, but the right tail 
is high, and this means that the mean value of the 
distribution is much higher than the mode: 
4590»250. 

5) Median of N. The median (= fifty-fifty abscissa, 
splitting the pdf in two exactly equi-probable pans) 
of the lognormal distribution of N is given by (89), 
and has the numeric value: 

et' ' 1740 
	

199) 

In words, assuming the input values listed in Table 1, 
we have exactly a 50% probability that the actual 
value of N is lower than 1740, and 50% that it is 
higher than 1740. 

7. COMPARING THE cur RESULTS 
WITH THE NON-CLT RESULTS 

The time is now ripe to compare the CL4-

based results about the lognormal distribution of N. 

just described in Section 5, against the Non-CTT-

based results obtained numerically in Section 3.3 

To do so in a simple. visual way, let us plot on 

the same diagram two curves: 

1) The numeric curves appearing in Figure 2 

and obtained after laborious Fourier 

transform calculations in the complex 

domain, and 

2) The lognormal distribution (56) with 

numeric re and a given by (91) and (94) 

respectively. 

We see that the two curves are virtually coincident 
for values of N larger than 1500, This is a 
consequence of the law of large numbers, of which 
the (Iris just one of the many facets. 

Similarly it happens for natural log of N. i.e. the 
random variable Y of (5),  that is plotted in Figure 5 
both in its normal curve version (thin curve) and in 
its numeric version, obtained via Fourier transforms 
and already shown in Figure 2. 

The conclusion is simple: from now on we shall 
discard forever the numeric calculations and well 
stick only to the equations derived by virtue of the 
CLT, i.e. to the lognormal (56) and its 
consequences. 

97) 
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PROBABILITY DENSITY FUNCTION OF N 

I 000 	2000 
	

3000 
	

4000 
N = Number of ET Fivilizaiio 	G levy 

Figure 4. Comparing the two probability density functions of the random variable N found: 
I) 	At the end of Section 3.3. in a purely numeric way and without resorting to the CLT at all (thick curve) and 
2) 	Analytically by using the CLT and the relevant lognormal approximation (thin curve). 

PROBABILITY DENSITY FUNCTION OF Y=In(N) 

2 	1 	4 	6 	7 	11 	9 
	

10 
	

2 
Indeper dent vinable V = In(N) 

Figure 5. Comparing the two probability density function, of the random variable Y=IMN) found: 
I) 	At the end of Section 3.3. in a purely numeric wa and without resorting to the CLT at all (thick curve) and 
2) 	Analytically by using the CLT and the relevant n rmal (Gaussian) approximation (thin Gaussian curve). 

8. DISTANCE OFFHE NEAREST 
EXTRATERRESTRIAL CIVILIZATION 
AS A PROBABILITY DISTRIBUTION 

As an application of the Statistical Drake 
Equation developed in the previous sections of this 
paper, we now want to consider the problem of 
estimating the distance of the ExtraTerrestrial 
Civilization nearest to us in the Galaxy. In all 
Astrobiology textbooks (see, for instance, ref. POD 

45 

and in several web sites, the solution to this 
problem is reported with only slight differences in 
the mathematical proofs among the various authors. 
In the first of the coming two sections (section 7.1) 
we derive the expression for this "ET_Distance" 
(as we like to denote it) in the classical, non-
probabilistic way: in other words, this is the 
classical, deterministic derivation. In the second 
section (7.2) we provide the probabilistic 
derivation, arising from our Statistical Drake 
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Equation, of the corresponding probability density 
function ./E.Lp,s,„„,„(r) : here r is the distance 

between us and the nearest ET civilization 
assumed as the independent variable of its own 
probability density function. The ensuing sections 
provide more mathematical details about this 

,i„,.(r) such as its mean value, variance, 

standard deviation, all central moments, mode, 
median, cumulants, skewness and kurtosis. 

CLASSICAL, NON-PROBABILISTIC 
DERIVATION OE THE DISTANCE OE THE 
NEAREST la CIVILIZATION 

Consider the Galactic Disk and assume that: 
I) The diameter of the Galaxy is (about) 100,000 

light years. (abbreviated ly) i.e. its radius, 
is about 50,000 ly. 

21 The thickness of the Galactic Disk at half-way 
from its center, h., , is about 16,000 ly. 

Then 
31 The volume of the Galaxy may be 

approximated as the volume of the 
corresponding cylinder, i.e. 

HOW 

41 Now consider the sphere around us having a 
radius r. The volume of such as sphere is 

he 
	4 	EF_Distance

Jr 	
 

3 t 	2 
	 (101) 

In the last equation, we had to divide the distance 
"ET_Distance" between ourselves and the nearest 
ET Civilization by 2 because we are now going to 
make the unwarranted assumption that all ET 
Civilizations are equally space from each other in 
the Galaxy! This is a crazy assumption, clearly, 
and should be replaced by more scientifically-
grounded assumptions as soon as we know more 
about our Galactic Neighbourhood. At the moment, 
however, this is the best guess that we can make, 
and so we shall take it for granted, although we are 
aware that this is weak point in the reasoning. 

Having thus assumed that ET Civilizations 
are UNIFORMLY SPACED IN THE GALAXY, 
we can write down this proportion: 

V (Jab n- 	„„r  s  phere  
(102) 

   

That is, upon replacing both (100) and (101) into 
(102): 

4 (El Distance
Jr 

 

3 	
(103) 

1 

The only unknown in the last equation is 
ET_Distance, and so we may solve jOr it, thus 
getting the: 
(AVERAGE) DISTANCE BETWEEN ANY PAIR 
OF NEIGHBOURING CIVILIZATIONS 

GALAXY 
IN 

( 104 ) 

( 105 ) 

THE 

where 

V
6/2,-;„1„,, h 

Er Distance = 

the positive constant C is defined by 

C =1ilfi 1?.(2•;,, „n  h 	28845 	light years 

Equ itions (104) and (105) are the starting point for 
our first application of the Statistical Drake 
equation, that we discuss in detail in the coming 
sections of this paper. 

PROBABILISTIC DERIVATION OF THE 
PROBABILITY DENSITY FUNCTION FOR 
ET_DISTANCE 

The probability density function (pdt) yielding 
the distance of the ET Civilization nearest to us in 
the Galaxy and presented in this section, was 
discovered by this author on September hilt 2007. 
He did not disclose it to other scientists until the 
SETI meeting run by the famous mathematical 
physicist and popular science author, Paul Davies, 
at the "Beyond" Center of the University of 
Arizona at Phoenix, on February 5-6-7-8, 200/3 
This meeting was also attended by SETI Institute 
experts Jill Tarter, Seth Shostak, Doug Vakoch, 
Tom Pierson and others. During this author's talk. 
Paul Davies suggested to call "the Maecone 
distribution" the new probability density function 
that yields the ET_Distance and is derived in this 
section. 

Van _ 

Jr Ra 
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Upon replacing (III) into (9 , we then find 
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Let us go back to equation (104). Since N is 
now a random variable (obeying the lognormal 
distribution), it follows that the ET_Distance must 
be a random variable as well. Hence it must have 
some unknown probability density function that 
we denote by 

4 
1061 

where r is the new independent variable of such a 
probability distribution (it is denoted by r to 
remind the reader that it expresses the three-
dimensional radial distance separating us from the 
nearest ET civilization in a full spherical symmetry 
of the space around us). 

The question then is: what is the unknown 
probability distribution (106) of the ET_Distance? 
We can answer this question upon making the two 
formal substitutions 

This is the denominator of (9). The numerator 
simply is the lognormal probability density 
function (56) where the old independent variable x 
must now be re-written in terms of the new 
independent variable y by virtue of (109). By 
doing so, we finally arrive at the new probability 
density function ly 

_ 

     

     

 

C 3 	c 

 

3 

 

3 

 

     

     

(107) 
N —> 

Ef_distance 

3 C  
ty ( V) 	4  

NIT.cr 

into the transformation law (8) for random 
variables. As a consequence, (104) takes form 

(108)  

In order to find the unknown probability density 

IET_Distatue(r) we now to apply the rule (9) to 

(108). First, notice that (108), when inverted to 
yield the various roots Xi  (y), yields a single real 

root only 

(109)  

Then, the summation in (9) reduces to one term 
only. 
Second, differentiating (108) one finds 

(110)  

Thus, the relevant absolute value reads  

Rearranging and replacing y by r, the final form 
is: 

. (113) 

Now, just replace C in (113) by virtue of (105). 
Then: 

We have discovered the probability density 
function yielding the probability of finding the 
nearest ExtraTerrestrial Civilization in the 
Galaxy in the spherical shell between the 
distances rand r+dr from Earth: 

/LT_D66. 
3 	I 	 2crI. 

 

2a a 

 

(114) 
holding for r 0. 

STATISTICAL PROPERTIES OF THIS 
DISTRIBUTION 
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Upon setting k= I into (117), the important 
We 	now 	want 	to 	study 	this 	probability 

distribution in detail. Our next questions are: 
1) What is its mean value? 
2) What 	are 	its 	variance 	and 	standard 

deviation? 
3) What are its moments to any higher order? 
4) What are its cumulants? 
5) What are its skewness and kurtosis? 
6) What are the coordinates of its peak, i.e. 

the mode (peak abscissa) and its ordinate'? 
7) What is its median? 

mean value 
is found 

Upon setting 
the square 
found 

of the random variable ET_Distance 

(1191 

value of 
is 

(ET_Distance) = C'e 3  ei 8  

k = 2 into (117), the mean 
of the random variable ET_Distance 

The first three points in the list are all covered 
by the following theorem: all the moments of (113) 
are given by (here k is the generic and non-
negative integer exponent, i.e. k = 1,2,3,_. 0 ) 

ET_Distance2  = C2 	 (120) 

The variance of ET_Distance now follows from 
the last two formulae with a few reductions: 

KET_Distance" ) = 
	

Hdr 

aziZz Disicaa — ET_Distance 2  ) - (ET_Distanee)2  

     

     

di 
- .11  

= 	e 	e Y  

 

Y 

     

k 	3 =C e (115) 
So, the variance of ET_Distance is 

To prove this result, one first transforms the above 
integral by virtue of the substitution 

. 	( 122) 

Then the new integra in z is then seen to reduce to 
the known Gaussian integr U (53) and, after several 
reductions that we skip for the sake of brevity. 
(115) follows from (53). In other words, we have 
proven that 

(ET_DistanceI  )= C A  e 	 ( 1 171 

Ups n 	setting 	k= 0 	into 	(117), 	the 
normalization condition for JFELDi„„„, (r) follows 

(r)dr 41. 	(118) 
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The square root of this is the i nportant 
standard deviation of the ET_Distance random 
variable 

• 
ft 

CET D, 	= 	eCe 3 IS 
	

— I 

The third moment is obtained upon setting 
k=3 into (117) 

(ET_Distance' = C' ez e 2 	(124) 

Finally, upon setting k =4 into (117). the fourth 
moment of ET_Distance is found 

4 

ET_Distance) = C4 	 (125) 

In 
C 3  

r
3 = Z • ( 116) 

    

lET D 
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(127) 

kW= 	 
2 a' 

Cl  

r 3 

(135) 

1 
LI 

,u) 
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Our next goal is to find the cumulants of the 
ET_Distanee. In principle, we could compute all 
the cumulants K.;  from the generic i-th moment 

ic by virtue of the recursion fommla (see ref. [8]) 

K r = fi, -/ 
A-I 

In practice, however, here we shall confine 
ourselves to the computation of the first four 
cumulants because they only are required to find 
the skewness and kurtosis of the distribution (113). 
Then, the first four cumulants in terms of the first 
four moments read: 

K1 = 

K, =P2  —K2 

K 3  =p3 —3K1  K2  -K 

K4 =1/4 -4K[ K 3 - 3 K4' —6 K 2 K[2  - 

( 0_2 

e " e 2  —3 e 	+2e 

4c7 

—4 e 9  —3e 9  +12c 6r 

and and the kurtosis 

u2  

+ 2 e 3  + C 	6. 	(133) 

Next we want to find the mode of this 
distribution. i.e. the abscissa of its peak. To do so, 
we must first compute the derivative of the 
probability density function . f,„, _,,,,,„„„,(r) of (113), 

and then set it equal to zero. This derivative is 
actually the derivative of the ratio of two functions 
of r, as its plainly appears from (113). Thus, let us 
set for a moment 

k —I 
p . ( 126) 

  

K4 	9 

(K2)2  

These equations yield, respectively: 

_P 

K, = Cc e 13  

_ 2p 0- 

K, =C 2  e 3  e 9  

K.;  = C3  

(131) 

—4 e " —3e " 	e —6e " 

In 
r 3 
	P 

2u2  

where "E" stands for "exponent," Upon 
differentiating, 
one gets 

But the probability density function (113) now 
reads 

e 2 -3 e + 2 e 6  

1C4  = 

= c4 e  

( 1341 

From these we derive he skewness 

 

( 136) 

 

So that its derivative is 

41/ET Di‘tanw (r)  _ 	3  

di'  

E(2)E.  (r).r —I. e E(I)  
2 
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-P (-10-I •r+1= 0 	(1391 

   

   

Rearranging, this becomes 

mut +o-2  =0 -3(In 

  

 

(7 -` 

r- 

  

(140) 

fiirm rp, =Ce 3  e 9  

C 	0-2  
InLH  

r 	9 
( 1421 

and finally 

(143) 
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3 	 r +1] 
371 

(144) 

This is the peak height in the pelf 

  

Setting this derivative equal to zero means setting 

(r)• r +I= 0 	 (138) 

That is, upon replacing (135) into (138), we get 

Next to the mode, the median in (ref. [90 is one 

more statistical number used to characterize any 
probability distribution. It is defined as the 

independent variable abscissa in such that a 

realization of the random variable will take up a 
value lower than In with 50% probability or a value 

higher than m with 50% probability again. In other 

words, the median m splits up our probability 

density in exactly two equally probable parts. Since 
the probability of occurrence of the random event 
equals the area under its density curse (i.e. the 
definite integral under its density curve) then the 
median in (of the lognormal distribution, in this 

case) is defined as the integral upper limit In: 

that is 
	 f

NT I)itan 
 wilt, 	I 	 (145) 

- 3In 

 

+3,u+a2  =0 	(141) Upon replacing (113), this becomes 

    

whence 

This is the most likely ET_Distancefrom Earth. 

How likely ? 

To find the value of the probability density 

function/ i. (r) corresponding to this value 

of the mode, we must obviously replace 0 into 0. 

After a few rearrangements, which we skip for the 

sake of brevity, one gets 

	

i0 3 	1  

	

r 	siTir 	 2 
	(146) 

In order to find m , we may not differentiate (146) 

with respect to in, since the "precise" factor 1/4  on the 

right would then disappear into a zero. On the 
contrary, we may try to perform the obvious 
substitution 

( 

In 

	

2 	\ 

2(3-- 

into the integral (146) to reduce it to the following 
integral (85) defining the error function erf(z). Then, 
after a few reductions that we leave to the reader as 
an exercise, the full equation (145), defining the 
median, is turned into the corresponding equation 
involvin the error function er fix) as defined by (85): 

,-
C - 

( 147) 

Peak Value of 1, , 	 = 1_00 	rim& 

3 	A 	18 

C-i/Tir 

50 

UNCLASSIFIED/ /PIDIFS,PP/e/1 



UNCLASSIFIED 

Random variable 
ET_Distanee between any two neighboring ET 

Civilizations in Galaxy assuming they are UNIFORMLY 
distributed throughout the whole Galaxy volume. 

Probability distribution Unnamed (Paul Davies suggested "Maccone distr bution") 

Probability density function 

fl 
 

., 	3 	I 
JET Distan,c(r) --  • 

(Defining the positive numeric constant C) 
., 

C =VoRG-  „ 	ilG„1„ 	28845 	light years 

Mean  value (ET_Distance) =Ce 3  e la  

Variance 

2 	a: 

L 1 	ms t  „n 	e 

( 	0-2  

1 

‘ 

Standard deviation a 	= C e 	 I ET DislanT 

All the the moments, i.e. k-th moment KET_Dis tance A  )= Ck  e 	18 

Mode (= abscissa of the probability density function 
peak) 

„ 	„- 

= Cc 3  e 9  

Value of the Mode Peak 3 

Peak Value of JET DISILIIIT (0 =  

1 	
. 

- iki pis( 	(;,(.k. 	- 6 
C/r a l. 

Median 	(= 	fifty-fifty 	probability 	value 	for 
ET_Distance) 

med'an = m = Ce 3  

Skewness 

em“e 2  

K3 

-Ac , 	, 4, 6 

(K4 )2 

C 3  
G 	 2G- 

e 	-4 e a 	— 3e a 	-4 12 	-6e " 

Kurtosis 
K 4 	3 	3e " 2 -4 	e 	+ 	-6 

Expression of pin terms of the lower (ak and upper 7  

(bi) limits of the Drake uniform input random 
variables D i 

Y \ 	
la

7 	
(2.[In(bi  )- I]- a, [In (a r )- I] 

ft = 	,/ I( 	- Li  k - a, 
l 	

i 
la 	

-I 

	

Expression of a2  in terms of the lower (a, 	'rid upper 

	

On limits of the Drake uniform input 	ndom 
variables 0, 

7 	 7 	 343 
2 a 	2 a 	

I 	" 
°A [In (18)- In (a, A-  

u -Lay.  -L 

i-1  i-[ 	
(lk - ai y 

Table 3. Summary of the properties of the probability distribution that applies to the random variable ET_)istance 
yielding the (average) distance between any two neighboring communicating civilizations in the Galaxy. 
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This is the median of the lognormal distribution of 
N. In other worth, this is the number of (148) 

2 	 Extraterrestrial civilizations in the Galaxy such 
that, with 50% probability the actual value of N will 
be lower than this median, and with 50% probability 
it will he higher. 
In conclusion, we feel useful to summarize all the 
equations that we derived about the random variable 

= 	 149) 	
N in the following Table 2. (  

NUMERICAL EXAMPLE OF THE 
ET_DISTANCE DISTRIBUTION 

In 
C' 

P 

1H a 

that is 

In 
C 3  

lIP 

rf 

Since from the definition (147) one obviously has 
erf(0)=0. (149) yields 

In this section we provide a numerical 
example of the analytic calculations carried on so 
far. 

median =ni = C e 3  

5.03-10 - 

Consider the Drake Equation values reported 
( 150 ) 	in Table I. Then, the graph of the corresponding 

probability density function of the nearest 
ET_Distance. fET  D „ne (r), is shown in Figure 6. 

(151) 

DISTANCE OF NEAREST ET_CIVILIZATION 

Ii 	P 

= 

whence finally 

500 	1000 1500 2000 2 00 3000 3 Of 
	

4000 4500 5000 
FT_Dist ase Own Earth( Rio yea 51 

Figure 6. This is the probability of finding the nearest ExtraTerrestrial Civilization at the distance r from 
Earth (in light years) if the values assumed in the Drake Equation are those shown in Table 1. The relevant 
probability density function FE+ 	is given by equation (113). Its mode (peak abscissa) equals 1933 

light years, but its mean value is higher since the curve has a high tail on the right: the mean value equals in 
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fact 2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FOR 
SETI, inasmuch as the nearest ET Civilization might lie at just 1 sigma = 2670-1309 = 1361 light years 
from us. 

From Figure 6, we see that the probability of 
finding ExtraTentestrials is practically zero up to a 
distance of about 5(1) light years from Earth. Then 
it starts increasing with the increasing distance 
from Earth, and icaches its maximum at 

_P 
r„, (,,r,„, I =Ce 3  e 9  =1933 light years 	I52 

This is the MOST LIKELY VALUE of the 
distance at which we can expect to find the 
nearest ExtraTerrestrial civilization. 

It is not, however, the mean value of the 
probability distribution (113) for .11,,_,,i,,i„„c (r). In 

fact, the probability density (113) has an infinite 
tail on the right, as clearly shown in Figure 6, and 
hence its mean value must be higher than its peak 
value. As given by (119), its mean value is 

p (7 2  

=Ce 3  ei 8  +. 2670 light years 	(153) 

This is the MEAN (value of the) DISTANCE 
at which we can expect to find ExtraTerrestrials 

After having found the above two distances (1933 
and 2670 light years, respectively), the next natural 
question that arises is: "what is the range, forth and 
back around the mean value of the distance, within 
which we can expect to find ExtraTerrestrials with 
"the highest hopes 7," The answer to this question 
is given by the notion of standard deviation, that 
we already found to be given by (123) 

NT Ilt•tan.t. =Ce 3  e 18 	—1 	I3W light years 

..I54) 

More precisely, this is the so called I-sigma 
(distance) level. Probability theory then shows that 
the nearest ExtraTerrestrial civilization is expected 
to be located within this range, i.e. within the two 
distances of (2670-1309) = 1361 light years and 
(2670+1309) = 3979 light years, with probability 

53 

given by the integral of /ff. Dianne (I) taken in 

between these two lower and upper limits, that is: 

/39791igl1tyear• 
TET Distan   (r)dr-,  0.75 = 75% (155) 

36 Illehlyears 

In pinin words: with 75% probabilily, the nearest 
ExtraTerrestrial civilization is located in between 
the distances of 1361 and 3979 light years from us, 
having assumed the input values to the Drake 
Equation given by Table I. If we change those 
input values, then all the numbers change again. 

9. THE "DATA ENRICHMENT 
PRINCIPLE" AS THE BEST CLT 
CONSEQUENCE UPON THE 
STATISTICAL DRAKE EQUATION 
(ANY NUMBER OF FACTORS 
ALLOWED) 

As a fitting climax to all the statistical 
equations developed so far, let us now state our 
"DATA ENRICHMENT PRINCIPLE," It simply states that 
"The Higher the Number of Factors in the 

Statistical Drake equation, The Better," 

Put in this simple way, it simply looks like a 
new way of saying that the CLT lets the random 
variable Y approach the normal distribution when 
the number of terms in the sum (4) approaches 
infinity. And this is the case, indeed. However, our 
"Data Enrichment Principle" has more profound 
methodological consequences that we cannot 
explain now, but hope to describe more precisely 
in one or more coming papers. 

CONCLUSIONS 

We have sought to extend the classical Drake 
equation to let it encompass Statistics and 
Probability. 

This approach appears to pave the way to 
future, more profound investigations intended not 
only to associate "error bars.' to each factor in the 
Drake equation, but especially to increase the 
number of factors themselves. In fact, this seems to 
be the only way to incorporate into the Drake 
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equation more and more new scientific information 
as soon as it becomes available. In the long run, 
the Statistical Drake equation might just become a 
huge computer code, growing up in size and 
especially in the depth of the scientific information 
it contained. It would thus be Humanity's first 
"Encyclopaedia Galactica," 

Unfortunately, to extend the Drake equation to 
Statistics, it was necessary to use a mathematical 
apparatus that is more sophisticated than just the 
simple product of seven numbers. 

When this author had the honour and privilege 
to present his results at the SETI Institute on April 
I Ill, 2008, in front of an audience also including 
Professor Frank Drake, he felt he had to add these 
words: "My apologies, Frank, for disrupting the 
beautiful simplicity of your equation," 
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